亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于MHSA+DeepLab v3+的無人機(jī)遙感影像小麥倒伏檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2022JM-128)


Detection of Wheat Lodging in UAV Remote Sensing Images Based on Multi-head Self-attention DeepLab v3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    倒伏是影響小麥產(chǎn)量和質(zhì)量的重要因素之一,及時(shí)準(zhǔn)確獲取倒伏信息有利于小麥良種選育中的倒伏損失鑒定。本文以小麥灌漿期和成熟期兩個(gè)生長階段的可見光無人機(jī)遙感影像為依據(jù),構(gòu)建多生長階段小麥倒伏數(shù)據(jù)集,通過在DeepLab v3+模型中添加不同的注意力模塊進(jìn)行比較分析,提出一種基于多頭自注意力(MHSA)的DeepLab v3+小麥倒伏檢測模型。試驗(yàn)結(jié)果表明,提出的MHSA+DeepLab v3+模型的平均像素精度(Mean pixel accuracy, mPA)和均交并比(Mean intersection over union, mIoU),灌漿期分別為93.09%和87.54%,成熟期分別為93.36%和87.49%。與代表性的SegNet、PSPNet和DeepLab v3+模型相比,在灌漿期mPA提高了25.45、7.54、1.82個(gè)百分點(diǎn)和mIoU提高了36.15、11.37、2.49個(gè)百分點(diǎn),在成熟期mPA提高了15.05、6.32、0.74個(gè)百分點(diǎn),mIoU提高了23.36、9.82、0.95個(gè)百分點(diǎn)。其次,相比于CBAM和SimAM兩種注意力模塊,在灌漿期及成熟期基于多頭自注意力的DeepLab v3+表現(xiàn)均為最優(yōu),在灌漿期其mPA和mIoU分別提高了1.6、2.07個(gè)百分點(diǎn)和1.7、2.45個(gè)百分點(diǎn),成熟期提高了0.27、0.11個(gè)百分點(diǎn)和0.26、0.15個(gè)百分點(diǎn)。研究表明提出的改進(jìn)的DeepLab v3+模型能夠有效地捕獲灌漿期和成熟期的無人機(jī)小麥遙感圖像中的倒伏特征,準(zhǔn)確識(shí)別不同生育期的倒伏區(qū)域,具有良好的適用性,為利用無人機(jī)遙感技術(shù)鑒定小麥倒伏災(zāi)害等級(jí)和良種選育等提供了參考。

    Abstract:

    Lodging is one of the main factors, which affect the yield and quality of wheat. Timely and accurate acquisition of wheat lodging information is beneficial to cultivating fine varieties and identifying lodging losses in agricultural insurance. A multi-growth stage wheat lodging dataset was constructed based on the visible light UAV remote sensing images of the two growth stages of wheat: grain filling stage and mature stage. By adding different attention modules to the DeepLab v3+ model for comparative analysis, a DeepLab v3+ wheat lodging detection model based on multi-head self-attention was proposed to accurately detect the lodging areas during wheat growth. The experimental results showed that the mPA and mIoU of the proposed multi-head self-attention DeepLab v3+ model were 93.09%, 87.54% (the grain filling stage) and 93.36%, 87.49% (the mature stage), which were improved by 25.45, 7.54, 1.82 (mPA) and 36.15, 11.37, 2.49 (mIoU) percentage points at the grain-filling stage and outperformed by 15.05, 6.32, 0.74 (mPA) and 23.36, 9.82, 0.95 (mIoU) percentage points at the mature stage, compared with the representative SegNet, PSPNet and DeepLab v3+ models, respectively. Secondly, compared with the two attention modules of CBAM and SimAM, DeepLab v3+ based on multi-head self-attention performed the best in both the grain filling stage and the mature stage, and its mPA and mIoU were increased by 1.6, 2.07 and 1.7, 2.45 percentage points at the grain-filling stage and increased by 0.27, 0.11 and 0.26, 0.15 percentage points at the mature stage. The results showed that the improved DeepLab v3+ model captured the lodging features in the UAV remote sensing images of wheat at the grain filling and mature stages effectively and identified the lodging areas in different growth stages precisely, and it had good applicability. It provided a reference for the identification of wheat lodging disaster grades and breeding of improved varieties by using UAV remote sensing technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊蜀秦,王鵬飛,王帥,唐云松,寧紀(jì)鋒,奚亞軍.基于MHSA+DeepLab v3+的無人機(jī)遙感影像小麥倒伏檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):213-219. YANG Shuqin, WANG Pengfei, WANG Shuai, TANG Yunsong, NING Jifeng, XI Yajun. Detection of Wheat Lodging in UAV Remote Sensing Images Based on Multi-head Self-attention DeepLab v3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):213-219.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-31
  • 出版日期:
文章二維碼