亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)DeepSORT的群養(yǎng)生豬行為識別與跟蹤方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

廣東省科技計(jì)劃項(xiàng)目(2019A050510034)、廣州市重點(diǎn)項(xiàng)目(202206010091)、廣州市科技計(jì)劃重點(diǎn)實(shí)驗(yàn)室建設(shè)項(xiàng)目(201902010081)和廣東省企業(yè)特派員項(xiàng)目(GDKTP2021055700)


Behavior Recognition and Tracking Method of Group housed Pigs Based on Improved DeepSORT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為改善豬只重疊與遮擋造成的豬只身份編號(Identity,ID)頻繁跳變,在YOLO v5s檢測算法基礎(chǔ)上,提出了改進(jìn)DeepSORT行為跟蹤算法。該算法改進(jìn)包括兩方面:一針對特定場景下豬只數(shù)量穩(wěn)定的特點(diǎn),改進(jìn)跟蹤算法的軌跡生成與匹配過程,降低ID切換次數(shù),提升跟蹤穩(wěn)定性;二將YOLO v5s檢測算法中的行為類別信息引入跟蹤算法中,在跟蹤中實(shí)現(xiàn)準(zhǔn)確的豬只行為識別。實(shí)驗(yàn)結(jié)果表明,在目標(biāo)檢測方面,YOLO v5s的mAP為99.3%,F(xiàn)1值為98.7%。在重識別方面,實(shí)驗(yàn)的Top-1準(zhǔn)確率達(dá)到99.88%。在跟蹤方面,改進(jìn)DeepSORT算法的MOTA為91.9%,IDF1為89.2%,IDS為33;與DeepSORT算法對比,MOTA和IDF1分別提升了1.0、16.9個百分點(diǎn),IDS下降了83.8%。改進(jìn)DeepSORT算法在群養(yǎng)環(huán)境下能夠?qū)崿F(xiàn)穩(wěn)定ID的豬只行為跟蹤,能夠?yàn)闊o接觸式的生豬自動監(jiān)測提供技術(shù)支持。

    Abstract:

    Behavior recognition and tracking of group-housed pigs are an effective aid to monitor pigs’ health status in smart farming. In real farming scenarios, it is still challenging to automatically track the behavior of group-housed pigs by using computer vision techniques due to the pigs’ overlapping occlusion and illumination change, which cause the identity (ID) of pig to switch wrongly. To improve the situation, an improved DeepSORT algorithm of behavior tracking based on YOLO v5s was proposed. The improvement of the algorithm included two parts. One was that the trajectory processing and data association were improved in the scene where there was a fixed number of pigs. This reduced ID switch and enhanced tracking stability. The other was that the behavior information from YOLO v5s detection algorithm was introduced into the tracking algorithm, thereby achieving behavior recognition of pigs in tracking. The experimental results showed that YOLO v5s algorithm had a mAP of 99.3% and an F1 of 98.7% in object detection. In terms of re-identification, the Top-1 accuracy of the experiment was 99.88%. In terms of tracking, the method achieved a favorable performance with a MOTA of 91.9%, an IDF1 of 89.2% and an IDS of 33. Compared with the original DeepSORT algorithm, the proposed method improved 1.0 percentage points and 16.9 percentage points in MOTA and IDF1 respectively, and decreased 83.8% in IDS. This showed that the improved DeepSORT algorithm was able to achieve behavior tracking of group-housed pigs with stable ID. The method can provide technical support for no-contact automatic monitoring of pigs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

涂淑琴,劉曉龍,梁云,張宇,黃磊,湯寅杰.基于改進(jìn)DeepSORT的群養(yǎng)生豬行為識別與跟蹤方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(8):345-352. TU Shuqin, LIU Xiaolong, LIANG Yun, ZHANG Yu, HUANG Lei, TANG Yinjie. Behavior Recognition and Tracking Method of Group housed Pigs Based on Improved DeepSORT Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):345-352.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-31
  • 出版日期:
文章二維碼