亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進YOLOv5m的采摘機器人蘋果采摘方式實時識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省科技重大專項(2020zdzx03-04-01)


Real-time Apple Picking Pattern Recognition for Picking Robot Based on Improved YOLOv5m
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為準確識別果樹上的不同蘋果目標,并區(qū)分不同枝干遮擋情形下的果實,從而為機械手主動調(diào)整位姿以避開枝干對蘋果的遮擋進行果實采摘提供視覺引導(dǎo),提出了一種基于改進YOLOv5m面向采摘機器人的蘋果采摘方式實時識別方法。首先,改進設(shè)計了BottleneckCSP-B特征提取模塊并替換原YOLOv5m骨干網(wǎng)絡(luò)中的BottleneckCSP模塊,實現(xiàn)了原模塊對圖像深層特征提取能力的增強與骨干網(wǎng)絡(luò)的輕量化改進;然后,將SE模塊嵌入到所改進設(shè)計的骨干網(wǎng)絡(luò)中,以更好地提取不同蘋果目標的特征;進而改進了原YOLOv5m架構(gòu)中輸入中等尺寸目標檢測層的特征圖的跨接融合方式,提升了果實的識別精度;最后,改進了網(wǎng)絡(luò)的初始錨框尺寸,避免了對圖像里較遠種植行蘋果的識別。結(jié)果表明,所提出的改進模型可實現(xiàn)對圖像中可直接采摘、迂回采摘(蘋果上、下、左、右側(cè)采摘)和不可采摘果實的識別,識別召回率、準確率、mAP和F1值分別為85.9%、81.0%、80.7%和83.4%。單幅圖像的平均識別時間為0.025s。對比了所提出的改進算法與原YOLOv5m、YOLOv3和EfficientDet-D0算法在測試集上對6類蘋果采摘方式的識別效果,結(jié)果表明,所提出的算法比其他3種算法識別的mAP分別高出了5.4、22、20.6個百分點。改進模型的體積為原始YOLOv5m模型體積的89.59%。該方法可為機器人的采摘手主動避開枝干對果實的遮擋,以不同位姿采摘蘋果提供技術(shù)支撐,可降低蘋果的采摘損失。

    Abstract:

    In order to accurately identify the different fruit targets on apple trees, and automatically distinguish the fruit occluded by different branches, providing visual guidance for the mechanical picking end-effector to actively adjust the pose of apple picking to avoid the shelter of the branches, a real-time recognition method of apple picking pattern based on improved YOLOv5m for picking robot was proposed. Firstly, BottleneckCSP module was designed and improved to BottleneckCSP-B module which was used to replace the BottleneckCSP module in backbone architecture of original YOLOv5m network. The ability of image deep feature extraction of the original BottleneckCSP module was enhanced, and the original YOLOv5m backbone network was lightweight designed and improved. Secondly, SE module was inserted to the proposed improved backbone network, to better extract the features of different apple targets. Thirdly, the bonding fusion mode of feature maps, which were input to the target detection layer of medium size in the original YOLOv5m network, were improved, and the recognition accuracy of apple was improved. Finally, the initial anchor box sizes of the original network were improved, avoiding the misrecognition of apples in farther plant row. The experimental results indicated that the graspable, circuitous-graspable (up-graspable, down-graspable, left-graspable, right-graspable) and ungraspable apples could be identified effectively by using the proposed improved model in the study. The recognition recall, precision, mAP and F1 were 85.9%, 81.0%, 80.7% and 83.4%, respectively. The average recognition time was 0.025s per image. Contrasted with original YOLOv5m, YOLOv3 and EfficientDet-D0 model, the mAP of the proposed improved YOLOv5m model was increased by 5.4 percentage points, 22 percentage points and 20.6 percentage points, respectively on test set. The size of the improved model was 89.59% of original YOLOv5m model. The proposed method can provide technical support for the picking end-effector of robot to pick apples in different poses avoiding the shelter of branches, to reduce the loss of apple picking.

    參考文獻
    相似文獻
    引證文獻
引用本文

閆彬,樊攀,王美茸,史帥旗,雷小燕,楊福增.基于改進YOLOv5m的采摘機器人蘋果采摘方式實時識別[J].農(nóng)業(yè)機械學(xué)報,2022,53(9):28-38,59. YAN Bin, FAN Pan, WANG Meirong, SHI Shuaiqi, LEI Xiaoyan, YANG Fuzeng. Real-time Apple Picking Pattern Recognition for Picking Robot Based on Improved YOLOv5m[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):28-38,59.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼