亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于遙感多參數(shù)和門(mén)控循環(huán)單元網(wǎng)絡(luò)的冬小麥單產(chǎn)估測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(42171332、41871336)


Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and Gated Recurrent Unit Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為進(jìn)一步準(zhǔn)確、實(shí)時(shí)監(jiān)測(cè)冬小麥長(zhǎng)勢(shì)并估測(cè)其產(chǎn)量,以陜西省關(guān)中平原為研究區(qū)域,選取冬小麥旬或生育時(shí)期尺度的條件植被溫度指數(shù)(VTCI)、葉面積指數(shù)(LAI)和光合有效輻射吸收比率(FPAR)作為遙感特征參數(shù),分別構(gòu)建不同時(shí)間尺度的單參數(shù)、雙參數(shù)和多參數(shù)的門(mén)控循環(huán)單元(GRU)神經(jīng)網(wǎng)絡(luò)模型,并模擬得到冬小麥長(zhǎng)勢(shì)綜合監(jiān)測(cè)指數(shù)I,結(jié)果表明,旬尺度的模型精度總體高于生育時(shí)期尺度的模型精度?;?折交叉驗(yàn)證法進(jìn)一步驗(yàn)證旬尺度多參數(shù)GRU模型的魯棒性,并構(gòu)建I與統(tǒng)計(jì)單產(chǎn)之間的線性回歸模型以估測(cè)冬小麥單產(chǎn),結(jié)果顯示,冬小麥估測(cè)單產(chǎn)與統(tǒng)計(jì)單產(chǎn)的決定系數(shù)(R2)為0.62,均方根誤差(RMSE)為509.08kg/hm2,平均相對(duì)誤差(MRE)為9.01%,相關(guān)性達(dá)到極顯著水平(P<0.01),表明旬尺度的多參數(shù)估產(chǎn)模型能夠較準(zhǔn)確地估測(cè)關(guān)中平原冬小麥產(chǎn)量,且產(chǎn)量分布呈現(xiàn)西高東低的空間特性和整體保持穩(wěn)定且平穩(wěn)增長(zhǎng)的年際變化特征。此外,基于GRU模型捕獲冬小麥生長(zhǎng)的累積效應(yīng),分析在連續(xù)旬中逐步輸入?yún)?shù)對(duì)產(chǎn)量估測(cè)的影響,結(jié)果顯示,模型具有識(shí)別冬小麥關(guān)鍵生長(zhǎng)階段的能力,3月下旬至4月下旬是冬小麥生長(zhǎng)的關(guān)鍵時(shí)期。

    Abstract:

    In order to further accurately and real-time monitor the growth of winter wheat and estimate its yield, taking Guanzhong Plain in Shaanxi Province as study area, and vegetation temperature condition index (VTCI), leaf area index (LAI), fraction of photosynthetically active radiation (FPAR) at the ten-day or growth stage scales were selected as remotely sensed characteristic parameters. The GRU model was constructed based on different input parameters and time scales to obtain the growth comprehensive monitoring index I of winter wheat. The results showed that the accuracy of the models at the ten-day scale were generally higher than those of the growth stage scales. Based on the five-fold cross-validation method, the robustness of the multi-parameter GRU model on the ten-day scale was further verified, and the winter wheat yield was estimated based on the linear regression model between the growth comprehensive monitoring index I and the official yield records. The results showed that the R2 between the estimated and official yield records of winter wheat was 0.62, the RMSE was 509.08kg/hm2, the mean relative error (MRE) was 9.01%, and the correlation reached the extremely significant level (P<0.01), indicating that the multi-parameter yield estimation model at the ten-day scale can accurately estimate the yield of winter wheat in the Guanzhong Plain. The distribution of yield presented the spatial characteristics of high yield in the west and low yield in the east, and the inter-annual change characteristics of overall stability and steady growth. In addition, based on the GRU model, the cumulative effect of winter wheat growth was captured, and the influence of inputting parameters step by step in consecutive ten days on yield estimation was analyzed. The results showed that the model had the ability to identify the key growth stages of winter wheat, and late March to late April was the critical period for the growth of winter wheat.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王鵬新,王婕,田惠仁,張樹(shù)譽(yù),劉峻明,李紅梅.基于遙感多參數(shù)和門(mén)控循環(huán)單元網(wǎng)絡(luò)的冬小麥單產(chǎn)估測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):207-216. WANG Pengxin, WANG Jie, TIAN Huiren, ZHANG Shuyu, LIU Junming, LI Hongmei. Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and Gated Recurrent Unit Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):207-216.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼