亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于圖像消冗與CenterNet的稻飛虱識別分類方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(61773216、62173185)


Recognition and Classification Method of Rice Planthoppers Based on Image Redundancy Elimination and CenterNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)對不同稻飛虱的快速準(zhǔn)確識別,同時防止同一姿態(tài)下的同一只昆蟲被重復(fù)計數(shù),提出一種將圖像消冗與CenterNet網(wǎng)絡(luò)相結(jié)合的識別分類方法。首先利用自主設(shè)計的田間昆蟲采集裝置,自動獲取昆蟲圖像并制作數(shù)據(jù)集。其次,將CenterNet算法與圖像消冗算法相結(jié)合,選用深層特征融合網(wǎng)絡(luò)(Deep layer aggregation, DLA)作為主干網(wǎng)絡(luò)來提取昆蟲的特征,并進(jìn)行識別分類。將本文方法與經(jīng)典機器學(xué)習(xí)和深度學(xué)習(xí)模型進(jìn)行對比,實驗結(jié)果表明,對于田間昆蟲采集裝置獲取到的相似度較高的活體圖像,本文方法不僅能夠快速處理昆蟲圖像,而且能夠成功解決昆蟲重復(fù)檢測的問題,平均精度均值為88.1%,檢測速率為42.9f/s,無論是精度還是處理速度本文方法都具有較明顯優(yōu)勢。該研究有效地完成了對3種主要稻飛虱的識別分類,對不同時間段采集到的昆蟲表現(xiàn)出良好的泛化能力,可用于后期水稻害蟲暴發(fā)的智能預(yù)警和測報。

    Abstract:

    Rice planthopper is one of the most important pests of rice, which mainly includes white back planthopper, brown planthopper and small brown planthopper. In order to realize the rapid and accurate identification of rice planthoppers and prevent the same insect from being repeatedly identified and classified, the object detection algorithm combining image redundancy elimination and CenterNet network was proposed. Firstly, the field insect collection device independently developed by the team was used to automatically obtain insect images and make a data set. The data set was divided into four classes which included white back planthopper, brown planthopper, small brown planthopper and non-rice-planthopper. Secondly, for the live images with high similarity obtained by the field insect collection device, CenterNet with image similarity detection, image subtraction, image thresholding and bilateral filtering image redundancy elimination algorithms were combined, and a deep feature fusion network (deep layer aggregation, DLA) was selected, which was used as the backbone network to extract the characteristics of insects. Compared with the classic machine learning and deep learning models used in rice planthopper detection in the past, it had obvious advantages. The experiment results showed that for the preprocessed test set, the algorithm can not only quickly process insect images, but also can successfully solve the problem of insect repeated detection. The mean average precision was 88.1%, and the detection rate was 42.9f/s. The research effectively completed the identification and classification of the three types of rice planthoppers, and showed good generalization ability for insects collected in different time periods, which can be used for intelligent early warning and forecasting of rice pest outbreaks in the later period.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林相澤,徐嘯,彭吉祥.基于圖像消冗與CenterNet的稻飛虱識別分類方法[J].農(nóng)業(yè)機械學(xué)報,2022,53(9):270-276,294. LIN Xiangze, XU Xiao, PENG Jixiang. Recognition and Classification Method of Rice Planthoppers Based on Image Redundancy Elimination and CenterNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):270-276,294.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼