亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SCResNeSt的低分辨率水稻害蟲圖像識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

安徽省自然科學(xué)基金面上項(xiàng)目(2108085MC95)、安徽省科技重大專項(xiàng)(202003a06020016)、安徽省高校自然科學(xué)研究項(xiàng)目(KJ2020ZD03、KJ2020A0039)、農(nóng)業(yè)生態(tài)大數(shù)據(jù)中心開放項(xiàng)目(AE202004)和安徽省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金項(xiàng)目


Low-resolution Rice Pest Image Recognition Based on SCResNeSt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對稻田自然環(huán)境下害蟲移動(dòng),難以近距離拍攝高質(zhì)量圖像,導(dǎo)致在現(xiàn)有識別模型檢測時(shí)無法達(dá)到滿意識別精度的問題,提出了一種基于SCResNeSt的低分辨率水稻害蟲圖像識別方法。首先,使用增強(qiáng)型超分辨率生成對抗網(wǎng)絡(luò)(ESRGAN)對低分辨率圖像進(jìn)行數(shù)據(jù)增強(qiáng),解決低分辨率水稻害蟲有效信息少的問題;其次構(gòu)建了SCResNeSt網(wǎng)絡(luò),使用3個(gè)連續(xù)的3×3卷積層替換ResNet50中第1個(gè)7×7卷積,以減少計(jì)算量;使用自校準(zhǔn)卷積替代第2層卷積層中的3×3卷積,通過內(nèi)部通信顯式地?cái)U(kuò)展每個(gè)卷積層的視場,獲取害蟲圖像的部分背景信息,從而豐富輸出特征;在主干網(wǎng)絡(luò)中使用ResNeSt block(Split-attention network block)進(jìn)一步提升圖像中害蟲信息獲取的準(zhǔn)確性。最終,將優(yōu)選模型移植到手機(jī)端,開發(fā)了輕量化的移動(dòng)端水稻害蟲識別系統(tǒng)。實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有方法對比,ESRGAN數(shù)據(jù)增強(qiáng)方法可以恢復(fù)真實(shí)的作物害蟲信息,SCResNeSt模型有效提高了水稻害蟲的識別性能,識別精度達(dá)到91.20%,比原始ResNet50網(wǎng)絡(luò)提高3.2個(gè)百分點(diǎn),滿足野外實(shí)際場景下的應(yīng)用需求。本研究為水稻害蟲智能化識別和防治提供了技術(shù)基礎(chǔ)。

    Abstract:

    It was difficult to take high-quality images when pests were still and in close distance in the natural environment of rice field, which led to the problem that satisfactory identification accuracy could not be achieved when using the actual environmental identification model detection. A low-resolution rice pest image recognition method based on self-calibrated convolutions and ResNeSt block for ResNet50 (SCResNeSt) was proposed. Firstly, the enhanced super-resolution generative adversarial networks (ESRGAN) super partition network was used to enhance the data of low-resolution images to solve the problem of less effective information about rice pests. In SCResNeSt network, three consecutive 3×3 convolutional layers were used to replace the first 7×7 convolutional layer to reduce the computational cost. Using self-calibrated convolution instead of the 3×3 convolution in layer 2, through internal communication, the field of view of each convolutional layer was explicitly extended to obtain part of the background information of pest images, to enrich the output features. The split-attention network block (ResNeSt block) was used in the backbone network to further improve the accuracy of obtaining pest information in the image. Finally, the optimized model was deployed on the mobile terminal, and a lightweight mobile rice pest identification system was developed. The experimental results showed that compared with the existing methods, the ESRGAN model could recover the real information about crop pests, and the SCResNeSt model could effectively improve the performance of rice pest identification, the accuracy can reach 91.20%, which showed that the depth model could accurately identify rice pest types. The research result can provide an important technical basis for the intelligent identification and control of rice pests, and it would improve the level of rice production informatization.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

曾偉輝,張文鳳,陳鵬,胡根生,梁棟.基于SCResNeSt的低分辨率水稻害蟲圖像識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):277-285. ZENG Weihui, ZHANG Wenfeng, CHEN Peng, HU Gensheng, LIANG Dong. Low-resolution Rice Pest Image Recognition Based on SCResNeSt[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):277-285.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼