亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LightGBM和處方數(shù)據(jù)的番茄病害診斷方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62176261)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系北京市葉類蔬菜創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目(BAIC07-2022)


Tomato Disease Diagnosis Method Based on LightGBM and Prescription Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為高效地挖掘植物病害處方數(shù)據(jù)并輔助精準(zhǔn)診斷,以番茄病毒病、番茄晚疫病、番茄灰霉病3種病害為研究對(duì)象,構(gòu)建基于貝葉斯優(yōu)化LightGBM的番茄病害智能診斷模型,探索作物病害處方數(shù)據(jù)挖掘及其精準(zhǔn)診斷。重點(diǎn)對(duì)處方原數(shù)據(jù)(文本數(shù)據(jù)標(biāo)簽和One-hot編碼等)進(jìn)行預(yù)處理,以基于Wrapper的遞歸特征消除法進(jìn)一步提取作物病害處方數(shù)據(jù)的特征;利用基于LightGBM算法構(gòu)建番茄病害診斷模型,并與K近鄰(KNN)、決策樹(DT)、支持向量機(jī)(SVM)、隨機(jī)森林(RF)、梯度提升決策樹(GDBT)、AdaBoost和XGBoost常見機(jī)器學(xué)習(xí)模型運(yùn)行結(jié)果進(jìn)行比較分析并進(jìn)行優(yōu)化;設(shè)計(jì)基于LightGBM模型的Android手機(jī)端植物醫(yī)生病害診斷APP。實(shí)驗(yàn)結(jié)果表明,基于貝葉斯優(yōu)化的LightGBM模型綜合診斷準(zhǔn)確率可達(dá)到89.11%,比其他7種機(jī)器學(xué)習(xí)模型的診斷準(zhǔn)確率平均高3.65個(gè)百分點(diǎn);同時(shí)特征選擇后的LightGBM模型在保證模型準(zhǔn)確率的基礎(chǔ)上降低了前期數(shù)據(jù)收集難度,模型綜合準(zhǔn)確率提高至89.34%,其中番茄病毒病的診斷精確度和F1值均達(dá)到96%以上,運(yùn)行時(shí)間減少了47.73%;最后通過番茄葉霉病和番茄早疫病兩種病害對(duì)本文模型進(jìn)行了泛化能力測(cè)試,實(shí)驗(yàn)結(jié)果表明該模型具有較強(qiáng)的泛化能力和實(shí)用性。基于LightGBM模型設(shè)計(jì)的APP可以實(shí)現(xiàn)用戶人群友好的交互式可視化且滿足實(shí)際診斷需求。

    Abstract:

    Aiming at the problem of how to efficiently mine prescription big data and assist in accurate diagnosis, tomato virus disease, tomato late blight and tomato gray mold were selected as the research objects, and an intelligent diagnosis model of tomato disease based on Bayesian optimization LightGBM was constructed to explore the data mining and accurate diagnosis of crop disease prescription. The primary data (text data label and One-hot coding, etc.) were preprocessed, and the features of crop disease prescription data were further extracted by recursive feature elimination method based on Wrapper. The tomato disease diagnosis model was constructed based on LightGBM algorithm, and compared with the running results of K-nearest neighbor (KNN), decision tree (DT), support vector machine (SVM), random forest (RF), gradient boosting decision tree (GDBT), AdaBoost and XGBoost common machine learning models. An Android mobile terminal plant doctor disease diagnosis APP was designed based on LightGBM model. The experimental results showed that the comprehensive diagnosis accuracy of LightGBM model based on Bayesian optimization can reach 89.11%, which was 3.65 percentage points higher than that of other seven machine learning models on average. At the same time, the LightGBM model after feature selection reduced the difficulty of data collection in the early stage on the basis of ensuring the accuracy of the model, and the comprehensive accuracy of the model was improved to 89.34%. Among them, the diagnostic accuracy of tomato virus disease and F1-score could reach more than 96%, and the running time was reduced by 47.73%. Finally, the generalization ability of the proposed model was tested by tomato leaf mildew and tomato early blight, and the experimental results indicated that the model had strong generalization ability and practicability. The APP designed based on LightGBM model can realize user friendly interactive visualization and meet the actual diagnostic needs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐暢,丁俊琦,趙聃桐,喬巖,張領(lǐng)先.基于LightGBM和處方數(shù)據(jù)的番茄病害診斷方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):286-294. XU Chang, DING Junqi, ZHAO Dantong, QIAO Yan, ZHANG Lingxian. Tomato Disease Diagnosis Method Based on LightGBM and Prescription Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):286-294.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼