亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SSA-PSO-LSTM模型的羊舍相對(duì)濕度預(yù)測(cè)技術(shù)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61871475)、廣州市創(chuàng)新平臺(tái)建設(shè)計(jì)劃實(shí)驗(yàn)室建設(shè)專項(xiàng)(201905010006)、廣州市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(201903010043、202103000033)、廣東省農(nóng)業(yè)技術(shù)研發(fā)項(xiàng)目(2018LM2168)、廣東省科技計(jì)劃項(xiàng)目(2020A141405060、2016A020210122、2020B0202080002、2021B42121631)和廣州市增城區(qū)農(nóng)村科技特派員項(xiàng)目(2021B42121631)


Prediction of Sheep House Humidity Based on SSA-PSO-LSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    羊舍濕度過高或過低都會(huì)直接威脅肉羊健康生長(zhǎng),及時(shí)掌握濕度變化趨勢(shì)并提前調(diào)控是確保規(guī)?;庋驘o應(yīng)激環(huán)境下健康養(yǎng)殖的關(guān)鍵。為提高濕度預(yù)測(cè)精度,提出了基于奇異譜分析(SSA)、粒子群優(yōu)化算法(PSO)、長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的羊舍濕度非線性組合預(yù)測(cè)模型。利用SSA分離出正常序列和噪聲序列,將原始序列轉(zhuǎn)換為平滑序列;其次通過PSO不斷迭代優(yōu)化確定LSTM的最優(yōu)參數(shù)組合,降低LSTM的訓(xùn)練成本;最終依據(jù)優(yōu)化參數(shù)建立組合預(yù)測(cè)模型分別對(duì)兩序列進(jìn)行預(yù)測(cè),模型結(jié)果之和為最終預(yù)測(cè)結(jié)果。利用該模型對(duì)新疆維吾爾自治區(qū)2021年3月17—27日期間的羊舍空氣相對(duì)濕度進(jìn)行預(yù)測(cè),結(jié)果表明,該組合預(yù)測(cè)模型具有良好的泛化性、穩(wěn)定性和收斂性。與標(biāo)準(zhǔn)的ELM、SVR、LSTM、PSO-LSTM、EMD-PSO-LSTM等模型相比,本文提出的SSA-PSO-LSTM組合模型具有更高的預(yù)測(cè)精度,其均方誤差、平均絕對(duì)誤差和決定系數(shù)分別為1.127%2、0.803%和0.988。

    Abstract:

    Sheep house humidity has the characteristics of large time delay, nonlinearity and spatial distribution difference, and the interaction mechanism with a variety of environmental parameters is complex and highly coupled. The humidity prediction model constructed by traditional prediction methods is difficult to meet the needs of largescale accurate breeding of mutton sheep. Too high or too low humidity of sheep house will directly threaten the healthy growth of sheep. Timely control of the trend of humidity and early regulation is the key to ensure the welfare of sheep. A nonlinear combined prediction model of sheep house humidity based on singular spectrum analysis (SSA), particle swarm optimization (PSO) and optimized long short-term memory network (LSTM) was proposed for accuracy humidity prediction. Firstly, the normal sequence and noise sequence were separated by SSA, and the original sequence was transformed into smooth sequence. Secondly, the optimal parameter combination of LSTM was determined through PSO iterative optimization to reduce the training cost of LSTM. Finally, a combined prediction model was established according to the optimized parameters to predict the two sequences respectively, and the sum of the model results was the final prediction result. The model was used to predict the air humidity in sheep houses in Xinjiang Uygur Autonomous Region from March 17, 2021 to March 27, 2021. The results showed that the combined prediction model had good generalization, stability and convergence. Compared with the standard ELM, SVR, LSTM, PSO-LSTM,EMD-PSO-LSTM and other models, the proposed SSA-PS-LSTM combined model had higher prediction accuracy. Its mean square error (MSE), mean absolute error (MAE) and determination coefficient (R2) were 1.127%2, 0.803% and 0.988, respectively. The experimental results showed that the established model had better prediction performance, which can provide important decisions for formulating optimized sheep house environmental control strategy, solving the lag problem of environmental control effect, and it made a strong support for the healthy growth of sheep.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭建軍,韓鈐鈺,董佳琦,周冰,徐龍琴,劉雙印.基于SSA-PSO-LSTM模型的羊舍相對(duì)濕度預(yù)測(cè)技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):365-373,398. GUO Jianjun, HAN Qianyu, DONG Jiaqi, ZHOU Bing, XU Longqin, LIU Shuangyin. Prediction of Sheep House Humidity Based on SSA-PSO-LSTM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):365-373,398.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼