亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

深度學(xué)習(xí)框架下融合注意機(jī)制的機(jī)床運動精度劣化預(yù)示
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(51775074)、重慶市自然科學(xué)基金項目(cstc2021jcyj-msxmX0372)和重慶市教委科學(xué)研究重大項目(KJZD-M201801101)


Deterioration Prediction of Machine Tools’ Motion Accuracy Combining Attention Mechanism under Framework of Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    數(shù)控機(jī)床運動精度衰退是一個動態(tài)的演化過程。為盡早發(fā)現(xiàn)數(shù)控機(jī)床潛在的失效風(fēng)險,挖掘蘊(yùn)含在各類監(jiān)測數(shù)據(jù)序列中的運動精度演化特征,在深度門控循環(huán)網(wǎng)絡(luò)(Gated recurrent unit,GRU)框架下,提出了一種融合注意機(jī)制的數(shù)控機(jī)床運動精度劣化預(yù)示方法。為了克服傳統(tǒng)深度卷積神經(jīng)網(wǎng)絡(luò)不能學(xué)習(xí)時序特征的缺陷,采用深度編碼器-解碼器框架,提出基于深度GRU的運動精度深度學(xué)習(xí)建模方法,以數(shù)據(jù)驅(qū)動,自動挖掘運動精度與振動、溫度、電流等狀態(tài)信號時間序列的時空特征,預(yù)測運動精度,根據(jù)預(yù)測曲線對機(jī)床劣化趨勢進(jìn)行預(yù)示。為了增強(qiáng)主要狀態(tài)信號和關(guān)鍵時間點的信息表達(dá),提高精度劣化預(yù)測的準(zhǔn)確性,提出一種在深度學(xué)習(xí)框架中融合注意機(jī)制的方法,建立狀態(tài)參量的注意網(wǎng)絡(luò),計算振動、溫度等狀態(tài)信號與機(jī)床精度間關(guān)聯(lián)程度,自動調(diào)整各信號的權(quán)值;進(jìn)一步,建立時序注意網(wǎng)絡(luò)自主選取精度劣化歷史信息關(guān)鍵時間點,以提升較長時間段預(yù)示的準(zhǔn)確性。實驗結(jié)果表明,基于深度學(xué)習(xí)網(wǎng)絡(luò)與注意機(jī)制的預(yù)示模型可以很好地追蹤數(shù)控機(jī)床運動精度的劣化趨勢和規(guī)律,有較高的預(yù)測精度,優(yōu)于傳統(tǒng)方法。

    Abstract:

    The decline of motion accuracy of CNC machine tools is a dynamic evolution process. To detect the potential failure risk of CNC machine tools as early as possible, the motion accuracy’s deterioration information contained in various monitoring data sequences was mined. Based on the difference and complementarity of multisource monitoring big data, a prediction method for motion accuracy’s deterioration of CNC machine tools was proposed by combining the deep gated recurrent unit (GRU) and attention mechanism. In order to overcome the defect that the traditional deep convolution neural network cannot learn the time series feature, the deep learning modeling method of motion accuracy based on deep GRU was proposed by using deep encoder-decoder structure. By datadriven, the temporal and spatial characteristics of motion accuracy and state signal time series were automatically mined to predict the change curve of motion accuracy and the deterioration trend of accuracy. At the same time, in order to enhance the information expression of main state signals and key time points, and improve the accuracy of accuracy deterioration prediction, a method of integrating attention mechanism in deep learning network was proposed. The method can establish the attention network of state parameter, calculate the correlation degree between vibration, temperature and other status signals and machine tools’ accuracy, and automatically adjust the weight of each signal. Furthermore, through establishing timeseries attention network to select the key time points of historical information of accuracy deterioration, the accuracy of longterm prediction was improved. The experimental results showed that the prediction model based on deep learning network and attention mechanism can well track the deterioration trend and law of CNC machine tools’ motion accuracy, and it had high prediction accuracy than traditional methods.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜柳青,余永維.深度學(xué)習(xí)框架下融合注意機(jī)制的機(jī)床運動精度劣化預(yù)示[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(9):443-450. DU Liuqing, YU Yongwei. Deterioration Prediction of Machine Tools’ Motion Accuracy Combining Attention Mechanism under Framework of Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):443-450.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼