亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)DeepLab V3+的果園場景多類別分割方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32171908)、江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2021-14)、寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃重大項(xiàng)目(2018BBF02020)、江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2018372)和江蘇高校優(yōu)勢學(xué)科建設(shè)工程項(xiàng)目(PAPD)


Multi-category Segmentation of Orchard Scene Based on Improved DeepLab V3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    果園環(huán)境實(shí)時(shí)檢測是保證果園噴霧機(jī)器人精準(zhǔn)作業(yè)的重要前提。本文提出了一種基于改進(jìn)DeepLab V3+語義分割模型的果園場景多類別分割方法。為了在果園噴霧機(jī)器人上部署,使用輕量化MobileNet V2網(wǎng)絡(luò)替代原有的Xception網(wǎng)絡(luò)以減少網(wǎng)絡(luò)參數(shù),并在空洞空間金字塔池化(Atrous spatial pyramid pooling,ASPP)模塊中運(yùn)用ReLU6激活函數(shù)減少部署在移動(dòng)設(shè)備的精度損失,此外結(jié)合混合擴(kuò)張卷積(Hybrid dilated convolution,HDC),以混合擴(kuò)張卷積替代原有網(wǎng)絡(luò)中的空洞卷積,將ASPP中的擴(kuò)張率設(shè)為互質(zhì)以減少空洞卷積的網(wǎng)格效應(yīng)。使用視覺傳感器采集果園場景RGB圖像,選取果樹、人、天空等8類常見的目標(biāo)制作了數(shù)據(jù)集,并在該數(shù)據(jù)集上基于Pytorch對(duì)改進(jìn)前后的DeepLab V3+進(jìn)行訓(xùn)練、驗(yàn)證和測試。結(jié)果表明,改進(jìn)后DeepLab V3+模型的平均像素精度、平均交并比分別達(dá)到62.81%和56.64%,比改進(jìn)前分別提升5.52、8.75個(gè)百分點(diǎn)。模型參數(shù)量較改進(jìn)前壓縮88.67%,單幅圖像分割時(shí)間為0.08s,與原模型相比減少0.09s。尤其是對(duì)樹的分割精度達(dá)到95.61%,比改進(jìn)前提高1.31個(gè)百分點(diǎn)。該方法可為噴霧機(jī)器人精準(zhǔn)施藥和安全作業(yè)提供有效決策,具有實(shí)用性。

    Abstract:

    Real-time detection of orchard environment is an important prerequisite to ensure the accurate operation of orchard spray robot. An improved DeepLab V3+ semantic segmentation model was proposed for multi-category segmentation in orchard scene. For deployment on the orchard spray robot, the lightweight MobileNet V2 network was used to replace the original Xception network to reduce the network parameters, and ReLU6 activation function was applied in atrous spatial pyramid pooling (ASPP) module to reduce the loss of accuracy when deployed in mobile devices. In addition, hybrid dilated convolution (HDC) was combined to replace the void convolution in the original network. The dilated rates in ASPP were prime to each other to reduce the grid effect of dilated convolution. The RGB images of orchard scene were collected by using visual sensor, and eight common targets were selected to make the dataset, such as fruit trees, pedestrians and sky. On this dataset, DeepLab V3+ before and after improvement was trained, verified and tested based on Pytorch. The results showed that the mean pixel accuracy and mean intersection over union of the improved Deeplab V3+ model were 62.81% and 56.64%, respectively, which were 5.52 percentage points and 8.75 percentage points higher than before improvement. Compared with the original model, the parameters were reduced by 88.67%. The segmentation time of a single image was 0.08s, which was 0.09s less than the original model. In particular, the accuracy of tree segmentation reached 95.61%, which was 1.31 percentage points higher than before improvement. This method can provide an effective decision for precision spraying and safe operation of the spraying robot, and it was practical.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉慧,姜建濱,沈躍,賈衛(wèi)東,曾瀟,莊珍珍.基于改進(jìn)DeepLab V3+的果園場景多類別分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(11):255-261. LIU Hui, JIANG Jianbin, SHEN Yue, JIA Weidong, ZENG Xiao, ZHUANG Zhenzhen. Multi-category Segmentation of Orchard Scene Based on Improved DeepLab V3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):255-261.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼