亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Kinect v2傳感器的果樹枝干三維重建方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

新疆維吾爾自治區(qū)創(chuàng)新團(tuán)隊機(jī)器人及智能裝備技術(shù)科技創(chuàng)新團(tuán)隊項目(2022D14002)、機(jī)械制造系統(tǒng)工程國家重點(diǎn)實驗室開放課題基金項目(sklms2022023)和新疆維吾爾自治區(qū)科學(xué)技術(shù)協(xié)會科技咨詢重點(diǎn)項目(xjkj-2021-019)


3D Reconstruction Method for Fruit Tree Branches Based on Kinect v2 Sensor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對果樹三維重構(gòu)中存在建模精度低、成本高、拓?fù)浣Y(jié)構(gòu)差等問題,提出一種基于Kinect v2傳感器的果樹表型三維重建與骨架提取方法。首先,使用Kinect v2傳感器采集不同視角下的果樹點(diǎn)云數(shù)據(jù);其次,對植株點(diǎn)云進(jìn)行尺度不變特征變換的特征點(diǎn)檢測,對關(guān)鍵點(diǎn)使用快速點(diǎn)特征直方圖算法進(jìn)行特征向量計算,通過隨機(jī)抽樣一致性方法提純點(diǎn)云的初始位置,經(jīng)初始變換后使用改進(jìn)的迭代最近點(diǎn)算法進(jìn)行精配準(zhǔn)、拼接形成完整點(diǎn)云;最后,使用Delaunay三角剖分解構(gòu)點(diǎn)云數(shù)據(jù)對缺失點(diǎn)云進(jìn)行填充,使用Dijkstra最短路徑算法對最小生成樹進(jìn)行求取,通過迭代去除冗余分量對骨架進(jìn)行簡化,使用圓柱擬合算法估算枝干骨架,將枝干骨架變?yōu)榉忾]凸包多面體,實現(xiàn)果樹的枝干三維重建。實驗結(jié)果表明:采用本文所提建模方法點(diǎn)云平均配準(zhǔn)誤差為0.52cm,枝干平均重構(gòu)誤差不超過3.52%,重建效果良好。研究成果可為果園評估作物狀態(tài)、智能化修剪等研究提供數(shù)據(jù)支持。

    Abstract:

    Aiming at the problems of low modeling accuracy, high cost and poor topology structure in the three-dimensional (3D) reconstruction of fruit trees, a 3D reconstruction method of fruit tree phenotype and skeleton extraction based on Kinect v2 sensor was proposed. Firstly, the Kinect v2 sensor was used to collect fruit tree point cloud data from different perspectives. Secondly, the characteristic point detection of scale invariant feature transformation was carried out on the plant point cloud, the eigenvector vector calculation was carried out by using the fast point feature histogram algorithm, the initial position of the point cloud was purified by the random sampling consistency method, and the improved iterative nearest point algorithm was used to finely register and stitch to form a complete point cloud after the initial transformation. Finally, the Delaunay triangulation of the point cloud data was used to fill the missing point cloud, the Dijkstra shortest path algorithm was used to obtain the minimum spanning tree, the skeleton was simplified by iteratively removing redundant components, the tree skeleton was estimated by the cylindrical fitting algorithm, and the tree skeleton was transformed into a closed convex polyhedron, and the 3D reconstruction of the branches of the fruit tree was realized. The experimental results showed that the average error of point cloud registration was 0.52cm, and the average error of branch reconstruction was not more than 3.52%, and the reconstruction effect was good. The research results can provide data support for orchard assessment of crop status, intelligent pruning and other research.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

任棟宇,李曉娟,林濤,熊明明,許貞輝,崔高建.基于Kinect v2傳感器的果樹枝干三維重建方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(s2):197-203. REN Dongyu, LI Xiaojuan, LIN Tao, XIONG Mingming, XU Zhenhui, CUI Gaojian.3D Reconstruction Method for Fruit Tree Branches Based on Kinect v2 Sensor[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s2):197-203.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-17
  • 出版日期:
文章二維碼