亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于ResNet-CA的魚群飽腹程度識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD0900201)


Identification Method of Fish Satiation Level Based on ResNet-CA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    投喂作為水產(chǎn)養(yǎng)殖過程中的一個關(guān)鍵環(huán)節(jié),餌料的投喂量直接影響水產(chǎn)品的質(zhì)量和養(yǎng)殖成本。然而,目前的投喂方法包括人工投喂和機器定時定量投喂,大多依靠人工經(jīng)驗,很難實現(xiàn)精準投喂。本文基于改進的ResNet34識別魚群不同的飽腹程度。根據(jù)魚群在不同飽腹階段表現(xiàn)的攝食行為創(chuàng)建了含有5種不同飽腹程度的數(shù)據(jù)集,并采用數(shù)據(jù)增強操作對圖像進行預處理。其次在原始模型ResNet34的基礎(chǔ)上,本文提出使用坐標注意力機制,使模型在對圖像進行特征提取的過程中能夠做到專注于更大區(qū)域范圍。并且使用深度可分離卷積的方式來代替?zhèn)鹘y(tǒng)卷積,減少模型參數(shù)量。為了評估改進的有效性,分析了改進后的模型在魚群飽腹程度數(shù)據(jù)集上的性能,并將其與原模型ResNet34、AlexNet、VGG16、MobileNet-v2、GoogLeNet等經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)進行比較。綜合實驗結(jié)果表明,該模型相較于原模型參數(shù)量減少46.7%,準確率達到93.4%,相較于原模型提升3.4個百分點,同時改進后的模型在準確率、精確度、召回率等方面也都優(yōu)于其他卷積神經(jīng)網(wǎng)絡(luò)。綜上所述,本模型實現(xiàn)了性能與參數(shù)量之間的良好平衡,為后續(xù)模型在實際養(yǎng)殖環(huán)境中的部署并指導養(yǎng)殖戶改善和制定投喂策略提供了可能。

    Abstract:

    Feeding as a key part of the aquaculture process, the amount of bait fed directly affects the quality of aquatic products and the cost of aquaculture. However, the current feeding methods include manual feeding and machine feeding at regular intervals, which mostly rely on manual experience and are difficult to achieve accurate feeding. Different satiation levels of fish were identified based on the improved ResNet34, which was important for achieving accurate control of bait feeding in the future. A dataset- containing five different satiation levels was created based on the feeding behaviors exhibited by fish at different satiation stages, and the images were pre-processed using data enhancement operations. Secondly, based on the original model ResNet34, the use of coordinate attention mechanism wasproposed to enable the model to focus on a large area in the process of feature extraction of images. And the depth-separable convolution was used instead of the traditional convolution to reduce the number of model parameters. To evaluate the effectiveness of the improvements, the performance of the improved model wasanalyzed on the fish satiation dataset and compared it with the original model ResNet34, AlexNet,VGG16, MobileNet-v2, GoogLeNet and other classical convolutional neural network architectures. The comprehensive experimental results showed that the model reduced the amount of parameters by 46.7% and achieved an accuracy of 93.4% compared with the original model, which had a 3.4 percentage points improvement compared with the original model, and the improved model also outperformed other convolutional neural networks in terms of accuracy, precision, recall, and F1 score. In summary, the model achieved a good balance between performance and number of participants, which provided the possibility for subsequent models to be deployed in real farming environments and guide farmers in improving and developing feeding strategies.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫龍清,王新龍,王泊寧,王嘉煜,孟新宇.基于ResNet-CA的魚群飽腹程度識別方法[J].農(nóng)業(yè)機械學報,2022,53(s2):219-225. SUN Longqing, WANG Xinlong, WANG Boning, WANG Jiayu, MENG Xinyu. Identification Method of Fish Satiation Level Based on ResNet-CA[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s2):219-225.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-16
  • 出版日期:
文章二維碼