亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)與高光譜成像的藍(lán)莓果蠅蟲害無損檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

遼寧省教育廳基礎(chǔ)研究項(xiàng)目(LSNJC201906)和遼寧省自然科學(xué)基金項(xiàng)目(20180550943)


Nondestructive Detection of Blueberry Fruit Fly Pests Based on Deep Learning and Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對藍(lán)莓果蠅蟲害分類識別存在效率低、準(zhǔn)確度差等問題,采用深度學(xué)習(xí)方法對采集的藍(lán)莓高光譜圖像進(jìn)行數(shù)據(jù)處理與分析,以實(shí)現(xiàn)藍(lán)莓果蠅蟲害的無損檢測。首先藍(lán)莓高光譜圖像采用PCA進(jìn)行降維,優(yōu)選數(shù)據(jù)集PC2與PC3并進(jìn)行拼接得到最佳數(shù)據(jù)集PC23,對數(shù)據(jù)集中圖像進(jìn)行旋轉(zhuǎn)90°、旋轉(zhuǎn)180°、模糊、高亮、低亮、鏡像和高斯噪聲共7種增強(qiáng)操作,使各數(shù)據(jù)集容量擴(kuò)增為原始容量的18倍。然后采用VGG16、InceptionV3與ResNet50深度學(xué)習(xí)模型對藍(lán)莓果蠅蟲害圖像進(jìn)行檢測,均取得了較高的識別準(zhǔn)確率。其中ResNet50模型效率最高,且ResNet50模型的準(zhǔn)確率最高,達(dá)到92.92%,損失率最低,僅有3.08%,因此ResNet50模型在藍(lán)莓果蠅蟲害無損檢測方面整體識別效果最佳。為了進(jìn)一步提高藍(lán)莓果蠅蟲害無損檢測性能,從ECA注意力模塊、Focal Loss損失函數(shù)與Mish激活函數(shù)3方面對ResNet50模型進(jìn)行了改進(jìn),構(gòu)建了改進(jìn)的im-ResNet50模型。得出im-ResNet50模型識別準(zhǔn)確率達(dá)95.69%,損失率為1.52%。試驗(yàn)結(jié)果表明, im-ResNet50模型有效提升了藍(lán)莓果蠅蟲害識別能力。采用Grad-CAM分析了im-ResNet50模型可解釋性,能夠快速、準(zhǔn)確地?zé)o損檢測藍(lán)莓果蠅蟲害。

    Abstract:

    Aiming at the problems of low efficiency and poor accuracy in the classification and recognition of blueberry fruit fly pests, a deep learning method was proposed to process and analyze the collected blueberry hyperspectral images, so as to realize the nondestructive detection of blueberry fruit fly pests. Firstly, the dimension of blueberry hyperspectral image was reduced by PCA. And the better data set PC2 and PC3 was selected. The best data set PC23 was obtained by splicing PC2 and PC3. The seven enhancement operations were performed on the images in the dataset, including 90° rotation, 180° rotation, blur, brightness adjustment, mirror image and Gaussian noise, so as to expand the capacity of each data set to 18 times of the original capacity. Then the three deep learning models of VGG16, InceptionV3 and ResNet50 were used to recognize and detect blueberry fruit fly pest images, and high recognition accuracy was achieved. Among them, ResNet50 model had the highest efficiency, and the accuracy of ResNet50 model was the highest, reaching 92.92%, and the loss rate was the lowest, only 3.08%. Therefore, ResNet50 model had the best overall recognition effect on the nondestructive detection of blueberry fruit fly pests. Finally, an improved im-ResNet50 model was constructed based on ResNet50 model from three aspects: ECA attention module, Focal Loss loss function and Mish activation function. The recognition accuracy of im-ResNet50 model was 95.69%, and the loss rate was reduced to 1.52%. The results showed that im-ResNet50 model effectively improved the pest identification ability of blueberry fruit fly. The interpretability of im-ResNet50 model was also analyzed by Grad-CAM. The research results can quickly and accurately detect the blueberry fruit fly pests, and it can provide theoretical support for the intelligent detection and online sorting of small berry quality.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

田有文,吳偉,林磊,姜鳳利,張芳.基于深度學(xué)習(xí)與高光譜成像的藍(lán)莓果蠅蟲害無損檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(1):393-401. TIAN Youwen, WU Wei, LIN Lei, JIANG Fengli, ZHANG Fang. Nondestructive Detection of Blueberry Fruit Fly Pests Based on Deep Learning and Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):393-401.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-02-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-10
  • 出版日期:
文章二維碼