亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

農(nóng)作物遙感識(shí)別與單產(chǎn)估算研究綜述
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41701398)


Review on Crop Type Identification and Yield Forecasting Using Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    遙感憑借其快速、宏觀、無損及客觀等特點(diǎn),在快速獲取與解析作物類型、種植面積、產(chǎn)量等信息方面具有獨(dú)特優(yōu)勢。遙感提取和解譯的作物空間分布圖、種植面積、產(chǎn)量信息可以服務(wù)于農(nóng)業(yè)資源監(jiān)管、農(nóng)業(yè)信息普查、農(nóng)業(yè)保險(xiǎn)、農(nóng)業(yè)投資、精準(zhǔn)農(nóng)業(yè)等方面。本文分別就農(nóng)作物遙感識(shí)別與農(nóng)作物單產(chǎn)遙感估算的研究現(xiàn)狀、面臨的問題、潛在研究方向進(jìn)行了總結(jié)概述。首先總結(jié)了農(nóng)作物遙感識(shí)別特征與分類模型的研究現(xiàn)狀,針對(duì)遙感識(shí)別特征與作物類型缺乏知識(shí)關(guān)聯(lián)的核心問題,提出利用深度學(xué)習(xí)方法協(xié)同學(xué)習(xí)作物生長過程中的“時(shí)-空-譜”特征,并構(gòu)建面向農(nóng)作物遙感識(shí)別的知識(shí)圖譜,從而解決當(dāng)前農(nóng)作物遙感識(shí)別在識(shí)別精度和識(shí)別效率方面的問題。然后,分別從經(jīng)驗(yàn)統(tǒng)計(jì)模型、遙感光合模型、作物生長模型方面對(duì)當(dāng)前作物單產(chǎn)遙感估算進(jìn)行分析總結(jié),提出隨著高空間分辨率、高光譜分辨率、高時(shí)間分辨率數(shù)據(jù)的普及和深度學(xué)習(xí)技術(shù)發(fā)展,未來應(yīng)充分利用作物生長模型機(jī)理性強(qiáng)、深度學(xué)習(xí)對(duì)復(fù)雜問題建模能力強(qiáng)的特點(diǎn),使用作物生長模型進(jìn)行點(diǎn)位尺度模擬以驅(qū)動(dòng)深度學(xué)習(xí)完成復(fù)雜場景下的建模學(xué)習(xí),最終實(shí)現(xiàn)以機(jī)理做約束、以深度學(xué)習(xí)做空間外推的單產(chǎn)估算模式。

    Abstract:

    Remote sensing is of unique advantages in quickly obtaining and analyzing information such as crop types, planting areas, and yields duo to its rapid, macroscopic, non-destructive and objective observing characteristics. The crop spatial distribution map, planting area, and yield information extracted or interpreted by remote sensing can serve many agricultural applications such as resource supervision, information census, insurance and investment, and precision agriculture. The research status, problems and future potential research directions of crop type identification and yield estimation using remote sensing were summarized. Firstly, the research status of crop type identification was summarized from aspects of identification features and classification models. In view of the core problem of the lack of crop-wised identification feature knowledge, deep learning methods were proposed to be used to collaboratively learn the feature of “temporal-spatial-spectrum” in the process of crop growth, and finally a knowledge graph for crop remote sensing identification was constructed, so as to solve the problems, identification accuracy and identification efficiency, that affected current crop type identification using remotely sensed imagery. Secondly, by summarizing characteristics of three types of crop yield estimation models (i.e., empirical statistical model, remote sensing photosynthesis model and crop growth model), highly integrating crop growth model and deep learning methods were proposed to forecast crop yield which may be a valuable potential solution in the future, under the circumstance of the popularization of high spatial, high spectral, and high temporal-resolution data and the development of deep learning technology. Because crop growth model was of strong mechanism and deep learning methods were capable of learning complex problems. In the future, crop growth models can be used for point-scale simulation to drive deep learning methods to build yield forecasting model in complex scenarios, and finally a yield estimation model was achieved which used growth mechanism as constraints and deep learning model as spatial extrapolation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙龍才,李粉玲,常慶瑞.農(nóng)作物遙感識(shí)別與單產(chǎn)估算研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(2):1-19. ZHAO Longcai, LI Fenling, CHANG Qingrui. Review on Crop Type Identification and Yield Forecasting Using Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):1-19.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-20
  • 出版日期: