亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v3的玉米葉片氣孔自動(dòng)識(shí)別與測量方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河南省自然科學(xué)基金項(xiàng)目(202300410092、202300410093)和河南省科技攻關(guān)計(jì)劃項(xiàng)目(222102310090)


Automatic Identification and Measurement of Maize Leaves Stomata Based on YOLO v3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    氣孔是植物葉片與外界環(huán)境交換氣體和水分的重要結(jié)構(gòu)。針對(duì)現(xiàn)有氣孔性狀分析主要采用人工測量,過程繁瑣、效率低下、容易出現(xiàn)人為誤差的問題,本文采用YOLO(You only look once)深度學(xué)習(xí)模型完成了玉米葉片氣孔的自動(dòng)識(shí)別與自動(dòng)測量工作。結(jié)合玉米葉片氣孔數(shù)據(jù)集的特點(diǎn),對(duì)YOLO深度學(xué)習(xí)模型進(jìn)行了改進(jìn),有效地提高了氣孔識(shí)別和測量的精確率。對(duì)YOLO深度學(xué)習(xí)模型中的預(yù)測端進(jìn)行了優(yōu)化,降低了誤檢率;同時(shí),結(jié)合氣孔特征對(duì)16倍、32倍下采樣層進(jìn)行簡化,提高了識(shí)別效率。實(shí)驗(yàn)結(jié)果表明,改進(jìn)后的YOLO深度學(xué)習(xí)模型在玉米葉片氣孔數(shù)據(jù)集上識(shí)別精確率達(dá)到95%,參數(shù)測量的平均精確率達(dá)到90%以上。本文方法能夠自動(dòng)完成玉米葉片氣孔的識(shí)別、計(jì)數(shù)與測量,解決了傳統(tǒng)氣孔分析方法的低效率問題,為農(nóng)業(yè)科學(xué)家、植物學(xué)家開展植物氣孔分析研究提供了技術(shù)支撐。

    Abstract:

    Stomata are the important structure for plant leaves to exchange gas and water with environment. In order to solve the problem that traditional analysis methods of stomatal traits adopt manual observation and measurement, which causes tedious process, low efficiency and prone to human error, you only look once (YOLO) deep learning model was adopted to complete automatic identification and automatic measurement of stomata in maize (Zea mays L.) leaves. Combined with the characteristics of stomata data set, the YOLO deep learning model was improved to effectively improve the precision of stomata identification and measurement. The prediction end in YOLO deep learning model was optimized, which reduced the false detection rate. At the same time, the 16-fold and 32-fold down-sampling layers were simplified according to the characteristics of stomata, which improved the recognition efficiency. Experimental results showed that the identification precision of the improved YOLO deep learning model reached 95% on the maize leaves stomatal data set, and the average accuracy of parameter measurement was above 90%. The proposed method can automatically complete the identification, counting and measurement of stomata of maize, which solved the low efficiency of traditional stomatal analysis methods, and it can help agricultural scientists and botanists to conduct the analysis and research related to plant stomata.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張帆,郭思媛,任方濤,張新紅,李結(jié)平.基于改進(jìn)YOLO v3的玉米葉片氣孔自動(dòng)識(shí)別與測量方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(2):216-222. ZHANG Fan, GUO Siyuan, REN Fangtao, ZHANG Xinhong, LI Jieping. Automatic Identification and Measurement of Maize Leaves Stomata Based on YOLO v3[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):216-222.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-23
  • 出版日期: