亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于混合擴(kuò)張卷積和注意力的黃瓜病害嚴(yán)重度估算方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62176261)


Estimation Method of Leaf Disease Severity of Cucumber Based on Mixed Dilated Convolution and Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    自動(dòng)和準(zhǔn)確地估計(jì)病害的嚴(yán)重度對(duì)病害管理和產(chǎn)量損失預(yù)測(cè)至關(guān)重要。針對(duì)傳統(tǒng)病害嚴(yán)重度估算步驟復(fù)雜且低效,難以實(shí)現(xiàn)在田間場(chǎng)景下精準(zhǔn)估算問(wèn)題,提出了一種基于混合擴(kuò)張卷積和注意力機(jī)制改進(jìn)UNet(Mixed dilated convolution and attention mechanism optimized UNet,MA-UNet)的病害嚴(yán)重度估算方法。首先,針對(duì)病斑尺寸不一、形狀不規(guī)則問(wèn)題,提出混合擴(kuò)張卷積塊(Mixed dilation convolution block, MDCB)增加感受野并保持病斑信息的連續(xù)性,提升病斑分割精度。其次,為了克服復(fù)雜背景的影響,利用注意力機(jī)制(Attention mechanism)對(duì)空間維度和通道維度進(jìn)行相關(guān)性建模,獲得每個(gè)像素類內(nèi)響應(yīng)和通道間的依賴關(guān)系,緩解背景對(duì)網(wǎng)絡(luò)學(xué)習(xí)帶來(lái)的影響。最后,計(jì)算病害分割圖中病斑像素與葉片像素的比率來(lái)獲得嚴(yán)重度?;谔镩g條件下收集的黃瓜霜霉病和白粉病圖像進(jìn)行了驗(yàn)證,并與全卷積網(wǎng)絡(luò)(Fully convolutional network,F(xiàn)CN)、SegNet、UNet、PSPNet、FPN、DeepLabV3+進(jìn)行比較。結(jié)果表明,MA-UNet優(yōu)于比較方法,能夠滿足復(fù)雜環(huán)境下健康葉片和病斑的分割需求,平均交并比為84.97%,頻權(quán)交并比為93.95%?;贛A-UNet分割結(jié)果估計(jì)黃瓜葉部病害嚴(yán)重度的決定系數(shù)為0.9654,均方根誤差為1.0837%。該研究可為人工智能在農(nóng)業(yè)中快速估計(jì)和控制病害嚴(yán)重度提供參考。

    Abstract:

    Automatic and accurate estimation of disease severity is critical for disease management and yield loss prediction. Traditional disease severity estimation steps are complicated and inefficient, which makes it challenging to achieve accurate estimation in practical scenarios. A disease severity estimation method was proposed based on mixed dilated convolution and attention mechanism to improve UNet (MA-UNet). Firstly, to solve the problem of different sizes and irregular shapes of lesions, the mixed dilation convolution block (MDCB) was proposed to increase the receptive field and maintain the continuity of lesion information to improve the accuracy of lesion segmentation. Secondly, to overcome the influence of complex background, the attention mechanism (AM) was used to model the correlation between the spatial and channel dimensions. It can obtain the response within each pixel class and the dependency between channels to alleviate the backgrounds influence on network learning. Finally, the ratio of diseased lesion pixels to leaf pixels in the disease segmentation map was calculated to obtain the severity. It was validated based on cucumber downy mildew and powdery mildew images collected under field conditions and compared with fully convolutional network (FCN), SegNet, UNet, PSPNet, FPN, and DeepLabV3+. MA-UNet can meet the segmentation requirements of leaves and lesions in complex environments, with a mean intersection over union 84.97% and a value of frequency weighted intersection over union value of 93.95%. Moreover, it can accurately estimate the severity of cucumber leaf diseases, the correlation coefficient was 0.9654, and the RMSE was 1.0837%. The results showed that MA-UNet outperformed the comparison methods in refining lesion segmentation and accurately estimating disease severity. The research result can provide a reference for artificial intelligence to estimate and control disease severity in agriculture rapidly.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李凱雨,朱昕怡,馬浚誠(chéng),張領(lǐng)先.基于混合擴(kuò)張卷積和注意力的黃瓜病害嚴(yán)重度估算方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(2):231-239. LI Kaiyu, ZHU Xinyi, MA Juncheng, ZHANG Lingxian. Estimation Method of Leaf Disease Severity of Cucumber Based on Mixed Dilated Convolution and Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):231-239.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-09
  • 出版日期: