亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SSA-LSTM的日光溫室環(huán)境預測模型研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省農業(yè)重大應用技術創(chuàng)新項目(SD2019ZZ019)、山東省科技型中小企業(yè)創(chuàng)新能力提升工程項目(2022TSGC2047)和山東省重大科技創(chuàng)新工程項目(2022CXGC020708)


Solar Greenhouse Environment Prediction Model Based on SSA-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    構建日光溫室環(huán)境預測模型,準確預測溫室環(huán)境變化有助于精準調控作物生長環(huán)境,促進果蔬生長。而溫室小氣候環(huán)境數(shù)據(jù)多參數(shù)并存、耦合關系復雜,且具有時序性和非線性,難以建立準確的預測模型。針對以上問題,提出一種基于麻雀搜索算法(SSA)優(yōu)化的長短期記憶網絡(LSTM)溫室環(huán)境預測模型,實現(xiàn)了溫室環(huán)境數(shù)據(jù)的精準預測。實驗結果表明,采用SSA自動進行參數(shù)選優(yōu)的方式,解決了LSTM模型參數(shù)手動選擇的難題,大幅縮短模型訓練時間,且最優(yōu)的網絡參數(shù)能夠發(fā)揮模型的最佳性能。對日光溫室內空氣溫濕度、土壤溫濕度、CO2濃度和光照強度6種環(huán)境參數(shù)進行預測,SSA-LSTM平均擬合指數(shù)高達97.6%,相比BP、門控循環(huán)單元(GRU)、LSTM,其預測擬合指數(shù)分別提升8.1、4.1、4.3個百分點,預測精度明顯提升。

    Abstract:

    The accurate prediction of greenhouse environment variation based on the constructed prediction model is helpful to precisely regulate the crop environment, and promote the growth of fruits and vegetables. Due to the coexistence of multiple parameters, complex coupling with each other, temporality and nonlinearity of greenhouse microclimate environment, the accurate prediction model is difficult to establish. Based on above issues, a greenhouse environment prediction model was proposed based on the sparrow search algorithm (SSA) optimized-long short term memory (LSTM) neural network method, so as to realize the prediction of greenhouse environment data sequence with the Internet of things (IoT) collecting accurate multipoint environment data. The experimental results showed that the automatic parametric optimization process by SSA could deal with the time consuming problem of manual parameter selection for the LSTM model. The proposed SSA-LSTM method could lower the model training time, and the optimal parameters selection could make sure the model worked with the optimum capability. The trained SSA-LSTM model was used to predict six kinds of greenhouse environment data, including the air temperature, air humidity, soil temperature, soil humidity, CO2 concentration, and the illumination intensity. The proposed SSA-LSTM could realize a 97.6% average prediction fit index, compared with the back-propagation network, the gated recurrent unit neural network and the LSTM, the prediction fit index was elevated by 8.1 percentage points, 4.1 percentage points and 4.3 percentage points. Therefore, the prediction accuracy of SSA-LSTM was obviously improved. The research result could provide reference for the development of greenhouse environment control strategy and deal with the lag problem of environment control.

    參考文獻
    相似文獻
    引證文獻
引用本文

祖林祿,柳平增,趙妍平,李天華,李輝.基于SSA-LSTM的日光溫室環(huán)境預測模型研究[J].農業(yè)機械學報,2023,54(2):351-358. ZU Linlu, LIU Pingzeng, ZHAO Yanping, LI Tianhua, LI Hui. Solar Greenhouse Environment Prediction Model Based on SSA-LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):351-358.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-04-18
  • 出版日期: