亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)ResNet18模型的飼料原料種類識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(32072765)和國家重點研發(fā)計劃項目(2021YFD1300305)


Identification of Feed Raw Material Type Based on Improved ResNet18 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決飼料生產(chǎn)過程中入倉原料種類采用人工取樣感官識別所存在的問題,實現(xiàn)原料種類自動識別,以玉米、麩皮、小麥、豆粕、魚粉等大宗飼料原料為研究對象,自主設(shè)計搭建了多通道入倉原料種類自動識別裝置,采集飼料原料圖像數(shù)據(jù)集,并使用數(shù)據(jù)增強(qiáng)的方法增加樣本多樣性?;赗esNet18網(wǎng)絡(luò)模型加入通道注意力機(jī)制、增加Dropout函數(shù),并嵌入余弦退火法的Adam優(yōu)化器,引入遷移學(xué)習(xí)機(jī)制訓(xùn)練模型,構(gòu)建適用于飼料原料種類識別的CAM-ResNet18網(wǎng)絡(luò)模型。CAM-ResNet18網(wǎng)絡(luò)模型的原料種類驗證準(zhǔn)確率達(dá)99.1%,識別時間為2.58ms。與ResNet18、ResNet34、AlexNet、VGG16等網(wǎng)絡(luò)模型相比,模型驗證集準(zhǔn)確率分別提升0.6、0.2、3.7、1.1個百分點。針對混淆矩陣結(jié)果分析,測試集識別平均準(zhǔn)確率達(dá)99.4%,具有較高的精確度和召回率。結(jié)果表明,構(gòu)建的CAM-ResNet18網(wǎng)絡(luò)模型在飼料原料種類識別方面具有較高的識別精度和較快檢測速度,自主研發(fā)的多通道入倉原料種類自動識別裝置具有實際應(yīng)用價值。

    Abstract:

    With the aim to solve the problem of manual sampling and sensory identification of feed raw material entering the silo in the feed production process, and realize automatic identification of raw material type, taking bulk feed raw material such as corn, bran, wheat, soybean meal and fish meal as the research object, a multi-channel automatic identification device for feed raw material type was designed and built independently, feed raw material image dataset was collected, and data augmentation methods were used to increase sample diversity. Based on ResNet18 convolution neural network, CAM-ResNet18 network model for feed raw material type identification was constructed by adding the channel attention mechanism, adding the Dropout method, adopting the Adam optimizer and embedding the cosine annealing method,while the migration learning was introduced to train the model. The average accuracy of the CAM-ResNet18 network model for feed raw material type reached 99.1% in the validation set, with a recognition time of 2.58ms. Compared with the ResNet18, ResNet34, AlexNet and VGG16 network models, the validation accuracy was improved by 0.6, 0.2, 3.7 and 1.1 percentage points, respectively. For the result analysis of confusion matrix, the average accuracy of test set recognition was 99.4%, which had high accuracy and recall. The results showed that CAM-ResNet18 network model had higher accuracy rate and faster detection speed in the identification of feed raw material, providing a theoretical method and technical support for the identification of feed raw material entering the silo in the actual production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

牛智有,于重洋,吳志陶,邵艷凱,劉梅英.基于改進(jìn)ResNet18模型的飼料原料種類識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(2):378-385. NIU Zhiyou, YU Chongyang, WU Zhitao, SHAO Yankai, LIU Meiying. Identification of Feed Raw Material Type Based on Improved ResNet18 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):378-385.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-27
  • 出版日期: