亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Compact-YOLO v4的茶葉嫩芽移動(dòng)端識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

江蘇省高等學(xué)校自然科學(xué)研究重大項(xiàng)目(20KJA510007)、國家自然科學(xué)基金面上項(xiàng)目(61873120)和江蘇省自然科學(xué)基金面上項(xiàng)目(BK20201469)


Mobile Recognition Solution of Tea Buds Based on Compact-YOLO v4 Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    茶葉嫩芽精準(zhǔn)識別是實(shí)現(xiàn)嫩芽智能化采摘的前提與基礎(chǔ),采用視覺和深度學(xué)習(xí)的嫩芽識別方法逐漸成熟,但該方法過度依賴于高性能硬件,不利于采茶機(jī)器人移動(dòng)端的部署,針對這一問題,本文提出一種基于Compact-YOLO v4算法的茶葉嫩芽移動(dòng)端識別方法。首先對YOLO v4算法的Backbone網(wǎng)絡(luò)和Neck網(wǎng)絡(luò)進(jìn)行改進(jìn),將Backbone網(wǎng)絡(luò)替換為GhostNet,將Neck網(wǎng)絡(luò)中傳統(tǒng)卷積替換為Ghost卷積,改進(jìn)后的模型內(nèi)存占用量僅為原來的1/5。接著運(yùn)用遷移學(xué)習(xí)的訓(xùn)練方法提升模型精度,試驗(yàn)表明,Compact-YOLO v4算法模型的精度、召回率、平均精度均值、F1值分別為51.07%、78.67%、72.93%和61.45%。最后將本文算法模型移植到PRO-RK3568-B移動(dòng)端開發(fā)板,通過轉(zhuǎn)換模型、量化處理、改進(jìn)部署環(huán)境3種方式,降低模型推理計(jì)算對硬件性能的需求,最終在保證嫩芽識別準(zhǔn)確率的前提下,實(shí)現(xiàn)了優(yōu)化模型推理過程、減輕移動(dòng)端邊緣計(jì)算壓力的目的,為茶葉嫩芽采摘機(jī)器人的實(shí)際應(yīng)用提供了技術(shù)支撐。

    Abstract:

    The precise recognition of tea buds is the prerequisite and foundation of intelligent bud picking. The method of bud identification using vision and deep learning is gradually established, but it relies excessively on high-performance hardware, which is not conducive to the deployment of mobile tea picking robots. To solve this problem, a mobile recognition solution for tea buds based on the Compact-YOLO v4 algorithm was proposed. Firstly, the Backbone and Neck networks of the YOLO v4 algorithm were improved by replacing the Backbone network with GhostNet and the traditional convolution in the Neck network with Ghost convolution, the size of the improved model was only one-fifth of the original one. Secondly, the training method of transfer learning was applied to improve the model accuracy. The experiments showed that the Compact-YOLO v4 algorithm model had P, R, mAP and F1 score values of 51.07%, 78.67%, 72.93% and 61.45%, respectively. Finally, the algorithm model was transplanted to the PRO-RK3568-B mobile development board to reduce the hardware performance requirements of the model inference calculation by three ways: converting the model, quantization processing, and improving the deployment environment. The aim of optimizing the model inference process and reducing the pressure on edge computing on mobile was eventually achieved, while also ensuring the accuracy of tea bud recognition, providing a theoretical and practical basis for the practical application of tea bud picking robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃家才,唐安,陳光明,張鐸,高芳征,陳田.基于Compact-YOLO v4的茶葉嫩芽移動(dòng)端識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(3):282-290. HUANG Jiacai, TANG An, CHEN Guangming, ZHANG Duo, GAO Fangzheng, CHEN Tian. Mobile Recognition Solution of Tea Buds Based on Compact-YOLO v4 Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):282-290.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期: