亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v4的落葉松毛蟲侵害樹木實(shí)時(shí)檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

黑龍江省自然科學(xué)基金聯(lián)合引導(dǎo)項(xiàng)目(LH2020C049)


Real-time Detection Method of Dendrolimus superans-infested Larix gmelinii Trees Based on Improved YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)two-stage網(wǎng)絡(luò)模型訓(xùn)練成本高,無(wú)人機(jī)搭載的邊緣計(jì)算設(shè)備檢測(cè)速度低等問(wèn)題,提出一種基于改進(jìn)YOLO v4模型的受災(zāi)樹木實(shí)時(shí)檢測(cè)方法,以提高對(duì)落葉松毛蟲蟲害樹木的識(shí)別精度與檢測(cè)速度。以黑龍江省大興安嶺地區(qū)呼瑪縣白銀納鄉(xiāng)受落葉松毛蟲侵害的落葉松無(wú)人機(jī)圖像為數(shù)據(jù),利用LabelImg軟件標(biāo)注75~100m的無(wú)人機(jī)圖像,構(gòu)建落葉松毛蟲蟲害樹木圖像數(shù)據(jù)集。將CSPNet應(yīng)用于YOLO v4模型的Neck架構(gòu),重新設(shè)計(jì)Backbone的特征提取網(wǎng)絡(luò)——CSPDarknet53模型結(jié)構(gòu),并在CSPNet進(jìn)行優(yōu)化計(jì)算前的卷積中加入SENet以增加感受野信息,使其改變網(wǎng)絡(luò)的深度、寬度、分辨率及網(wǎng)絡(luò)結(jié)構(gòu),實(shí)現(xiàn)模型縮放,提高檢測(cè)精度。同時(shí),在PANet中使用CSPConvs卷積代替原有卷積Conv×5,最后經(jīng)過(guò)YOLO Head檢測(cè)輸出預(yù)測(cè)結(jié)果。將YOLO v4-CSP網(wǎng)絡(luò)模型部署至GPU進(jìn)行訓(xùn)練,訓(xùn)練過(guò)程的內(nèi)存降低至改進(jìn)前的82.7%。再搭載至工作站進(jìn)行測(cè)試,結(jié)果表明:改進(jìn)的YOLO v4-CSP網(wǎng)絡(luò)模型在測(cè)試階段對(duì)蟲害樹木檢測(cè)的正確率為97.50%,相比于YOLO v4的平均正確率提高3.4個(gè)百分點(diǎn),模型精度接近目前主流two-stage框架Faster R-CNN的98.75%;將改進(jìn)的YOLO v4-CSP網(wǎng)絡(luò)模型搭載至Jetson nano邊緣計(jì)算設(shè)備,檢測(cè)速度達(dá)到4.17f/s,高于YOLO v4模型的1.72f/s?;赮OLO v4-CSP的檢測(cè)模型可實(shí)現(xiàn)對(duì)受災(zāi)樹木檢測(cè)速度與精度的平衡,降低模型的應(yīng)用成本,搭載至無(wú)人機(jī)可實(shí)現(xiàn)對(duì)森林蟲害的實(shí)時(shí)監(jiān)測(cè)。

    Abstract:

    Aiming at the problems of high training cost of two-stage network model and low detection speed of edge computing equipment attached on UAV, a real-time detection method based on the improved YOLO v4 model was proposed in order to improve the recognition accuracy and detection speed for Dendrolimus superans-infested Larix gmelinii trees. Taking the UAV images of Larix gmelinii infested by Dendrolimus superansobtained from Baiyinna Township, Huma County in the Daxing'anling District of Heilongjiang Province as data, the UAV images at 75~100m were marked with LabelImg software, and a data set of tree images infested by Dendrolimus superanswas constructed. CSPNet was applied to the Neck architecture of the YOLO v4 model, the Backbones feature extraction network—CSPDarknet53 model structure was redesigned, and SENet was added to the convolution before CSPNet optimization calculations to increase the receptive field information, making it change the depth, width, resolution and structure of the network to achieve model scaling and improve detection accuracy. Meanwhile, CSPConvs convolution was used in PANet to replace the original convolution Conv×5, and finally the prediction result was output through YOLO Head detection. After deploying the YOLO v4-CSP network model to the GPU for training, the memory of the training process was reduced to 82.7% of that before improvement. The improved model was installed on the workstation for testing. Results showed that the accuracy of tree detection was 97.50%, which was 3.4 percentage points higher than the average detection accuracy of YOLO v4, and close to 98.75% of the current mainstream two-stage framework Faster R-CNN. When attached to Jetson nano edge computing equipment, the detection speed was 4.17f/s, higher than the 1.72f/s of YOLO v4 model. Therefore, the proposed detection model based on YOLO v4-CSP can achieve balance between detection speed and detection accuracy for the Dendrolimus superans-infested Larix gmelinii trees, reduce application cost of the model, and realize real-time monitoring of forest pests when attached to UAV.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林文樹,張金生,何乃磊.基于改進(jìn)YOLO v4的落葉松毛蟲侵害樹木實(shí)時(shí)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(4):304-312,393. LIN Wenshu, ZHANG Jinsheng, HE Nailei. Real-time Detection Method of Dendrolimus superans-infested Larix gmelinii Trees Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):304-312,393.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-28
  • 出版日期:
文章二維碼