亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于WGAN和MCA-MobileNet的番茄葉片病害識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

山東省引進(jìn)頂尖人才“一事一議”專項(xiàng)經(jīng)費(fèi)項(xiàng)目(魯政辦字[2018]27號)


Tomato Leaf Diseases Recognition Based on WGAN and MCA-MobileNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對番茄病害識別模型參數(shù)量大、計(jì)算成本高、準(zhǔn)確率低等問題,本文提出一種基于多尺度特征融合和坐標(biāo)注意力機(jī)制的輕量級網(wǎng)絡(luò)(Multiscale feature fusion and coordinate attention MobileNet, MCA-MobileNet)模型。采集10類番茄葉片圖像,采用基于Wasserstein距離的生成對抗網(wǎng)絡(luò)(Wasserstein generative adversarial networks, WGAN)進(jìn)行數(shù)據(jù)增強(qiáng),解決了樣本數(shù)據(jù)不足和不均衡的問題,提高模型的泛化能力。在原始模型MobileNet-V2的基礎(chǔ)上,引入改進(jìn)后的多尺度特征融合模塊對不同尺度的特征圖進(jìn)行特征提取,提高模型對不同尺度的適應(yīng)性;將輕量型的坐標(biāo)注意力機(jī)制模塊(Coordinate attention, CA)嵌入倒置殘差結(jié)構(gòu)中,使模型更加關(guān)注葉片中的病害特征,提高對病害種類的識別準(zhǔn)確率。試驗(yàn)結(jié)果表明,MCA-MobileNet對番茄葉片病害的識別準(zhǔn)確率達(dá)到94.11%,較原始模型提高2.84個(gè)百分點(diǎn),且參數(shù)量僅為原始模型的1/6。該方法較好地平衡了模型的識別準(zhǔn)確率和計(jì)算成本,為番茄葉片病害的現(xiàn)場部署和實(shí)時(shí)檢測提供了思路和技術(shù)支撐。

    Abstract:

    With the continuous development of smart agricultural technology, plant disease identification models are increasingly pursuing the goals of accuracy, efficiency, and light weight. Aiming at the problems of large number of parameters, high calculation cost and low accuracy in the current tomato disease recognition model, a lightweight network was proposed based on multi-scale feature fusion and coordinate attention mechanism (Multi-scale feature fusion and coordinate attention MobileNet, MCA-MobileNet) model. Totally ten types of tomato leaf images were collected, and Wasserstein generative adversarial networks (WGAN) based on Wasserstein distance for data enhancement was used, which solved the problem of insufficient and unbalanced sample data and improved the generalization ability of the model. On the basis of the original model MobileNet-V2, an improved multi-scale feature fusion module was introduced to extract features from feature maps of different scales to improve the adaptability of the model to different scales;the lightweight coordinate attention mechanism module (Coordinate attention, CA) embedded in the inverted residual structure, so that the model paid more attention to the disease characteristics in the leaves and improved the recognition accuracy of the disease types. The test results showed that the accuracy rate of MCA-MobileNet for identifying tomato leaf diseases reached 94.11%, which was 2.84 percentage points higher than that of the original model, and the number of parameters was only 1/6 of the original model. This method better balanced the recognition accuracy and calculation cost of the model, and provided ideas and technical support for field deployment and real-time detection of tomato leaf diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王志強(qiáng),于雪瑩,楊曉婧,蘭玉彬,金鑫寧,馬景余.基于WGAN和MCA-MobileNet的番茄葉片病害識別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):244-252. WANG Zhiqiang, YU Xueying, YANG Xiaojing, LAN Yubin, JIN Xinning, MA Jingyu. Tomato Leaf Diseases Recognition Based on WGAN and MCA-MobileNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):244-252.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼