亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于時(shí)空特征的奶牛視頻行為識(shí)別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(22327404D)、河北農(nóng)業(yè)大學(xué)精準(zhǔn)畜牧學(xué)科群建設(shè)項(xiàng)目(1090064)、河北省自然科學(xué)基金項(xiàng)目(F2020204003)和國家自然科學(xué)基金項(xiàng)目(62102130)


Video Behavior Recognition of Dairy Cows Based on Spatio-temporal Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    準(zhǔn)確、高效的奶牛行為識(shí)別有助于疾病檢測、發(fā)現(xiàn)異常,是感知奶牛健康的關(guān)鍵。通過分析奶牛在牛場中各時(shí)段的行為,提出一種基于時(shí)空特征的奶牛行為識(shí)別模型, 該模型在時(shí)域段網(wǎng)絡(luò)(TSN)的基礎(chǔ)上融合了時(shí)態(tài)移位模塊(TSM)、特征注意單元(FAU)和長短期記憶(LSTM)網(wǎng)絡(luò)。首先,利用TSM融合時(shí)間信息以提高時(shí)序建模能力,并將時(shí)序建模后的視頻幀輸入TSN。其次,利用FAU融合高分辨率空間信息和低分辨率語義信息,增強(qiáng)模型空間特征的學(xué)習(xí)能力。最后,由LSTM聚合過去和當(dāng)前信息進(jìn)行奶牛行為分類。實(shí)驗(yàn)表明,該方法對進(jìn)食、行走、躺臥、站立行為識(shí)別準(zhǔn)確率分別為76.7%、90.0%、68.0%、96.0%,平均行為識(shí)別準(zhǔn)確率為82.6%,和C3D、I3D、CNN-LSTM網(wǎng)絡(luò)相比,本文模型平均行為識(shí)別準(zhǔn)確率分別提升7.9、9.2、9.6個(gè)百分點(diǎn)。光照變化會(huì)對奶牛行為識(shí)別準(zhǔn)確率產(chǎn)生一定影響,但本文模型受光照影響相對較小。研究成果可為感知奶牛健康和疾病預(yù)防提供技術(shù)支持。

    Abstract:

    Accurate and efficient cow behavior recognition is helpful for timely disease detection and detection of abnormalities. It is the key to perceive cow health. By analyzing the behavior of cows at different periods in the cattle farm, a cow behavior recognition algorithm based on spatiotemporal features was proposed. The algorithm combined temporal shift module (TSM), feature attention unit (FAU) and long short-term memory (LSTM) networks on the basis of time-domain segment network (TSN). Firstly, TSM was used to fuse time information to improve timing modeling ability. The video frame after time sequence modeling was input to TSN. Secondly, FAU was used to integrate high resolution spatial information and low resolution semantic information to enhance the learning ability of spatial features of the algorithm. Finally, the past and current information were fused by LSTM to classify cow behavior. The results showed that the recognition accuracy of this algorithm for eating, walking, lying, and standing was 76.7%, 90.0%, 68.0% and 96.0%, respectively. And the average recognition accuracy was 82.6%. Compared with C3D, I3D and CNN-LSTM networks, the average recognition accuracy of this algorithm was 7.9 percentage points, 9.2 percentage points and 9.6 percentage points higher, respectively. The illumination variation had a certain impact on the recognition accuracy, but the proposed algorithm was relatively less affected by light. The results can provide technical support for cow health perception and disease prevention.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王克儉,孫奕飛,司永勝,韓憲忠,何振學(xué).基于時(shí)空特征的奶牛視頻行為識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):261-267,358. WANG Kejian, SUN Yifei, SI Yongsheng, HAN Xianzhong, HE Zhenxue. Video Behavior Recognition of Dairy Cows Based on Spatio-temporal Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):261-267,358.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼