亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于特征降維和機(jī)器學(xué)習(xí)的覆膜冬小麥LAI遙感反演
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1900700)和國(guó)家自然科學(xué)基金項(xiàng)目(51979235)


Remote Sensing Inversion of Leaf Area Index of Mulched Winter Wheat Based on Feature Downscaling and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為進(jìn)一步提升無(wú)人機(jī)遙感快速監(jiān)測(cè)覆膜條件下冬小麥葉面積指數(shù)(Leaf area index,LAI)的能力,以壟溝覆膜冬小麥為研究對(duì)象,利用無(wú)人機(jī)搭載五通道多光譜傳感器獲取2021—2022年冬小麥出苗期、越冬期、返青期、拔節(jié)期、抽穗期和灌漿期的遙感影像數(shù)據(jù),使用監(jiān)督分類剔除背景并計(jì)算50種可見(jiàn)光和近紅外植被指數(shù),采用主成分分析、相關(guān)系數(shù)法、決策樹排序和遺傳算法進(jìn)行特征降維,結(jié)合偏最小二乘、嶺回歸、支持向量機(jī)、隨機(jī)森林、梯度上升和人工神經(jīng)網(wǎng)絡(luò)6種機(jī)器學(xué)習(xí)算法建立不同輸入特征變量下的覆膜冬小麥LAI反演模型,并進(jìn)行精度評(píng)價(jià)。結(jié)果表明,剔除覆膜背景使冬小麥冠層反射率更接近真實(shí)值,提高反演精度。采用適宜的特征降維方法結(jié)合機(jī)器學(xué)習(xí)算法能夠提高覆膜冬小麥LAI的反演精度和穩(wěn)定性,對(duì)比特征降維前的反演精度,主成分分析和相關(guān)系數(shù)法無(wú)法優(yōu)化反演效果,決策樹排序只適用于基于樹模型的隨機(jī)森林和梯度上升算法,遺傳算法優(yōu)化效果明顯,遺傳算法-人工神經(jīng)網(wǎng)絡(luò)模型反演效果達(dá)到最優(yōu)(決定系數(shù)為0.80,均方根誤差為1.10,平均絕對(duì)值誤差為0.69,偏差為1.25%)。研究結(jié)果可為無(wú)人機(jī)遙感監(jiān)測(cè)覆膜冬小麥生長(zhǎng)狀況提供理論參考。

    Abstract:

    To further improve the ability of UAV remote sensing to rapidly monitor the leaf area index (LAI) of winter wheat under mulching conditions, a UAV with a five-channel multispectral sensor was used to acquire remote sensing image data of winter wheat during the emergence, overwintering, rejuvenation, plucking, tasseling and filling stages from 2021 to 2022, using supervised classification to remove background and calculate 50 visible and near-infrared vegetation indices. The LAI inversion models of mulched winter wheat with different input feature variables were developed and evaluated in terms of accuracy by using six machine learning algorithms: partial least squares, ridge regression, support vector machine, random forest, extreme gradient boosting and artificial neural network. The results showed that removing the mulched background would make the reflectance of winter wheat canopy closer to the real value and improve the inversion accuracy. The inversion accuracy and stability of mulched winter wheat LAI can be improved by using a suitable feature reduction method combined with machine learning algorithm, and the inversion accuracy before feature reduction cannot be optimized by principal component analysis and correlation coefficient method, and the decision tree ranking was only applicable to random forest and extreme gradient boosting algorithm based on tree model, and the optimization effect of genetic algorithm was obvious, genetic algorithm-artificial neural network model inversion effect reached the optimal (R2 was 0.80, RMSE was 1.10, MAE was 0.69, and deviation was 1.25%). The research results can provide theoretical reference for UAV remote sensing to monitor the growth condition of mulched winter wheat.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

谷曉博,程智楷,周智輝,常甜,李汶龍,杜婭丹.基于特征降維和機(jī)器學(xué)習(xí)的覆膜冬小麥LAI遙感反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(6):148-157,167. GU Xiaobo, CHENG Zhikai, ZHOU Zhihui, CHANG Tian, LI Wenlong, DU Yadan. Remote Sensing Inversion of Leaf Area Index of Mulched Winter Wheat Based on Feature Downscaling and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):148-157,167.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-10-29
  • 出版日期: