亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

復(fù)雜環(huán)境下蛋雞個體識別與自動計數(shù)系統(tǒng)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(32172779)、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-40)、河北省科技研發(fā)平臺建設(shè)專項(225676150H)和河北省在讀研究生創(chuàng)新能力項目(CXZZSS2023055)


Individual Identification and Automatic Counting System of Laying Hens under Complex Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    雞群計數(shù)是雞場資產(chǎn)評估中一項非常重要的工作。目前雞場采用的人工計數(shù)方法,存在效率低下且計數(shù)準(zhǔn)確度不穩(wěn)定的問題。針對此問題,本文提出了一種基于改進(jìn)YOLO v5s的蛋雞個體識別與計數(shù)的方法。該方法為了消除真實復(fù)雜環(huán)境下產(chǎn)蛋箱、食槽等設(shè)施對蛋雞個體識別帶來的干擾,在YOLO v5s模型的Neck部分引入了SimAM注意力機(jī)制;為了擴(kuò)大模型感受野,解決蛋雞個體較小、識別困難的問題,將YOLO v5s模型的SPPF(空間金字塔池化模塊)改為了SPPCSPC模塊;為了盡可能多地提取蛋雞有效特征,通過在YOLO v5s的Neck結(jié)構(gòu)添加自適應(yīng)特征融合模塊ASFF,將不同尺度的蛋雞成像特征信息進(jìn)行融合的方法,進(jìn)一步提升了模型的檢測精度。在此基礎(chǔ)上,通過調(diào)用模型檢測接口,在接口內(nèi)部添加計數(shù)函數(shù)、統(tǒng)計目標(biāo)數(shù)量的方法,實現(xiàn)了蛋雞個體的計數(shù)和雞舍飼養(yǎng)密度的計算。將改進(jìn)后的模型通過PyQt工具包進(jìn)行封裝、打包,開發(fā)了蛋雞個體識別與自動計數(shù)系統(tǒng)。實驗結(jié)果表明,改進(jìn)的YOLO v5s模型的精準(zhǔn)率、召回率、平均精度均值分別為89.91%、79.24%、87.53%,較YOLO v5s模型分別提高2.37、2.55、2.20個百分點。本模型在120~247只蛋雞雞舍的計數(shù)平均準(zhǔn)確率為94.77%,較YOLO v5s模型提升2.49個百分點。研發(fā)的蛋雞計數(shù)系統(tǒng)在河北省某養(yǎng)殖基地得到了實際應(yīng)用,為養(yǎng)殖場的蛋雞數(shù)量清點提供了一種可靠且有效的方法。

    Abstract:

    Hen counting is a very important task in hen farm asset valuation. The current manual counting methods used in hen farms suffer from low efficiency and unstable counting accuracy. To resolve this problem, a method for identifying and counting individual laying hens was proposed based on improved YOLO v5s. The method introduced the SimAM attention mechanism in the Neck part of the YOLO v5s model in order to eliminate the interference brought by facilities such as laying boxes and feeding troughs on the identification of individual laying hens in the real complex environment; in order to expand the sensory field of the model and solve the problem of small individual laying hens and difficulties in identification, the spatial pyramid pooling module (SPPF) of the YOLO v5s model was replaced by the SPPCSPC module; in order to extract as many effective features of laying hens as possible, the detection accuracy of the model was further improved by adding the adaptive feature fusion module ASFF to the Neck structure of YOLO v5s, which fused the imaging feature information of laying hens at different scales. On this basis, the counting of individual laying hens and the calculation of the housing density were realized by calling the model detection interface and adding counting functions and counting target numbers inside the interface. The improved model was packaged by PyQt toolkit, and the system of individual laying hens identification and automatic counting was developed. The test results showed that the precision, recall and mAP of the improved YOLO v5s model were 89.91%, 79.24% and 87.53%, respectively, which were 2.37, 2.55 and 2.20 percentage points higher than those of the YOLO v5s model. The average accuracy of this model in counting 120~247 laying hen houses was 94.77%, which was 2.49 percentage points better than that of the YOLO v5s model. The laying hens counting system developed was applied in a farm base in Hebei, providing a reliable and effective method for counting the number of laying hens on a farm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊斷利,王永勝,陳輝,孫二東,王連增.復(fù)雜環(huán)境下蛋雞個體識別與自動計數(shù)系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(6):297-306. YANG Duanli, WANG Yongsheng, CHEN Hui, SUN Erdong, WANG Lianzeng. Individual Identification and Automatic Counting System of Laying Hens under Complex Environment[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):297-306.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-02-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-20
  • 出版日期: