亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機RGB影像的馬鈴薯植株鉀含量估算
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

黑龍江省揭榜掛帥科技攻關項目(2021ZXJ05A05)和國家自然科學基金項目(41601346)


Estimation of Potassium Content of Potato Plants Based on UAV RGB Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    馬鈴薯植株鉀含量(Plant potassium content,PKC)是監(jiān)測馬鈴薯營養(yǎng)狀況的重要指標,快速準確地獲取馬鈴薯植株鉀含量對田間施肥和生產管理具有指導意義?;跓o人機遙感平臺搭載RGB傳感器分別獲取馬鈴薯塊莖形成期、塊莖增長期和淀粉積累期的RGB影像,并實測馬鈴薯植株鉀含量。首先利用各個生育期的RGB影像提取每個小區(qū)冠層平均光譜和紋理特征。然后分別基于冠層光譜和紋理特征構建植被指數(shù)和紋理指數(shù)(NDTI、RTI和DTI),并與實測PKC進行相關性分析。最后利用多元線性回歸(Multiple linear regression,MLR)、偏最小二乘(Partial least squares regression,PLSR)和人工神經網(wǎng)絡(Artificial neural networks,ANN)構建馬鈴薯PKC估算模型。結果表明:各生育期NDTI、RTI和DTI與馬鈴薯PKC相關性均高于單一紋理特征,植被指數(shù)結合紋理指數(shù)均能提高模型的可靠性和穩(wěn)定性,MLR和PLSR構建的估算模型精度均優(yōu)于ANN。本研究可為馬鈴薯PKC監(jiān)測提供科學參考。

    Abstract:

    Plant potassium content (PKC) of potato plants is an important indicator for monitoring potato nutrition status. Obtaining PKC quickly and accurately has guiding significance for field fertilization and production management. RGB images of potato plants during the tuber formation period, tuber growth period, and starch accumulation period were obtained by using an unmanned aerial vehicle (UAV) remote sensing platform equipped with an RGB sensor, and PKC was measured. Firstly, the average spectral and texture features of each plot were extracted from the RGB images of each growth period. Then vegetation indices and texture indices (NDTI, RTI, and DTI) were constructed based on the spectral and texture features of the canopy, and their correlations with the measured PKC were analyzed. Finally, multiple linear regression (MLR), partial least squares regression (PLSR), and artificial neural networks (ANN) were used to construct models for estimating potato PKC. The results showed that the correlations between NDTI, RTI, DTI and PKC were higher than those of single texture features during each growth period. Combining vegetation and texture indices can improve the reliability and stability of the model. MLR and PLSR models were superior to ANN. The research result can provide scientific references for monitoring PKC in potato plants.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬彥鵬,邊明博,樊意廣,陳志超,楊貴軍,馮海寬.基于無人機RGB影像的馬鈴薯植株鉀含量估算[J].農業(yè)機械學報,2023,54(7):196-203,233. MA Yanpeng, BIAN Mingbo, FAN Yiguang, CHEN Zhichao, YANG Guijun, FENG Haikuan. Estimation of Potassium Content of Potato Plants Based on UAV RGB Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):196-203,233.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼