亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多層信息融合和顯著性特征增強的農(nóng)作物病害識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(62176088)和河南省科技發(fā)展計劃項目(222102110135)


Crop Disease Recognition Based on Multi-layer Information Fusion and Saliency Feature Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    現(xiàn)有基于深度學(xué)習(xí)的農(nóng)作物病害識別方法對網(wǎng)絡(luò)淺層、中層、深層特征中包含的判別信息挖掘不夠,且提取的農(nóng)作物病害圖像顯著性特征大多不足,為了更加有效地提取農(nóng)作物病害圖像中的判別特征,提高農(nóng)作物病害識別精度,提出一種基于多層信息融合和顯著性特征增強的農(nóng)作物病害識別網(wǎng)絡(luò)(Crop disease recognition network based on multilayer information fusion and saliency feature enhancement, MISF-Net)。MISF-Net主要由ConvNext主干網(wǎng)絡(luò)、多層信息融合模塊、顯著性特征增強模塊組成。其中,ConvNext主干網(wǎng)絡(luò)主要用于提取農(nóng)作物病害圖像的特征;多層信息融合模塊主要用于提取和融合主干網(wǎng)絡(luò)淺層、中層、深層特征中的判別信息;顯著性特征增強模塊主要用于增強農(nóng)作物病害圖像中的顯著性判別特征。在農(nóng)作物病害數(shù)據(jù)集AI challenger 2018及自制數(shù)據(jù)集RCP-Crops上的實驗結(jié)果表明,MISF-Net的農(nóng)作物病害識別準(zhǔn)確率分別達到87.84%、95.41%,F(xiàn)1值分別達到87.72%、95.31%。

    Abstract:

    Crop disease recognition is a prerequisite for rational pesticide application and a powerful guarantee for promoting healthy and stable agricultural development. Existing deep learning-based crop disease recognition methods mainly use classical networks such as VGG and ResNet or networks that use attention mechanisms for disease recognition. Although these deep learning-based crop disease recognition methods have achieved better disease recognition results than traditional methods, they do not sufficiently mine the discriminative information contained in the shallow, middle and deep features of networks, and most of the extracted saliency features of crop disease images are insufficient. To extract discriminative features in crop disease images more effectively and improve crop disease recognition accuracy, a crop disease recognition network based on multi-layer information fusion and saliency feature enhancement (MISF-Net) was proposed. Specifically, MISF-Net mainly consisted of a ConvNext backbone network, a multi-layer information fusion module (MIFM), and a saliency feature enhancement module (SFEM). The ConvNext backbone network was mainly used to extract features of crop disease images. The multi-layer information fusion module was mainly used to extract and fuse the discriminative information from the shallow, medium and deep layers of the backbone network. The saliency feature enhancement module was mainly used to enhance the saliency discriminative features in crop disease images. The experimental results on the crop disease dataset AI challenger 2018 and the homemade dataset RCP-Crops showed that the crop disease recognition accuracies of MISF-Net reached 87.84% and 95.41%, and the F1 values reached 87.72% and 95.31%, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

杜海順,張春海,安文昊,周毅,張鎮(zhèn),郝欣欣.基于多層信息融合和顯著性特征增強的農(nóng)作物病害識別[J].農(nóng)業(yè)機械學(xué)報,2023,54(7):214-222. DU Haishun, ZHANG Chunhai, AN Wenhao, ZHOU Yi, ZHANG Zhen, HAO Xinxin. Crop Disease Recognition Based on Multi-layer Information Fusion and Saliency Feature Enhancement[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):214-222.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼