亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力機(jī)制和特征融合的葡萄病害識(shí)別模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61502500)


Grape Disease Recognition Model Based on Attention Mechanism and Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    植物病害是造成農(nóng)作物減產(chǎn)的主要原因之一。針對(duì)傳統(tǒng)的人工診斷方法存在成本高、效率低等問(wèn)題,構(gòu)建了一個(gè)自然復(fù)雜環(huán)境下的葡萄病害數(shù)據(jù)集,該數(shù)據(jù)集中的圖像由農(nóng)民在實(shí)際農(nóng)業(yè)生產(chǎn)中拍攝,同時(shí)提出了一個(gè)新的網(wǎng)絡(luò)模型MANet,該模型可以準(zhǔn)確地識(shí)別復(fù)雜環(huán)境下的葡萄病害。在MANet中嵌入倒殘差模塊來(lái)構(gòu)建網(wǎng)絡(luò),這極大降低了模型參數(shù)量和計(jì)算成本。同時(shí),將注意力機(jī)制SENet模塊添加到MANet中,提高了模型對(duì)病害特征的表示能力,使模型更加注意關(guān)鍵特征,抑制不必要的特征,從而減少圖像中復(fù)雜背景的影響。此外,設(shè)計(jì)了一個(gè)多尺度特征融合模塊(Multi-scale convolution)用來(lái)提取和融合病害圖像的多尺度特征,這進(jìn)一步提高了模型對(duì)不同病害的識(shí)別精度。實(shí)驗(yàn)結(jié)果表明,與其他先進(jìn)模型相比,本文模型表現(xiàn)出了優(yōu)越的性能,該模型在自建復(fù)雜背景病害數(shù)據(jù)集上的平均識(shí)別準(zhǔn)確率為87.93%,優(yōu)于其他模型,模型參數(shù)量為2.20×106。同時(shí),為了進(jìn)一步驗(yàn)證該模型的魯棒性,還在公開農(nóng)作物病害數(shù)據(jù)集上進(jìn)行了測(cè)試,該模型依然表現(xiàn)出較好的識(shí)別效果,平均識(shí)別準(zhǔn)確率為99.65%,高于其他模型。因此,本文模型具有實(shí)際應(yīng)用潛力。

    Abstract:

    Plant diseases are one of the main causes of crop yield reduction, however, traditional manual diagnosis methods are costly and inefficient, which are difficult to adapt to the demands of modern agricultural production. Recognizing crop diseases automatically and accurately is hence of great importance. Currently, most studies have focused on images taken by professionals for academic purposes, rather than by farmers in actual agricultural production. However, images taken in real applications by farmers are with far more complex backgrounds and hence alleviating the performance of many state-of-art methods. A grape leaf disease dataset were construted under natural complex environments where images were taken by farmers in actual agricultural production. And a network architecture named MANet was proposed for efficient recognition of grape leaf diseases under natural complex environment. The inverted residual module was embedded to build the model, which significantly lowered the number of model parameters. Moreover, the attention mechanism SENet module was used to improve the ability of the model to extract key disease features from complex background images and suppress other irrelevant information. In addition, a multi-scale convolution (MConv) module was designed to extract and fuse multi-scale features of disease images. The experimental results indicated that the proposed model presented a superior performance relative to other most advanced methods. On the public crop disease dataset, MANet achieved the highest average recognition accuracy of 99.65%. And even on the complex background crop disease dataset of the construction, the average recognition accuracy of grape diseases reached 87.93%, which was still better than other state-of-the-art models. Therefore, the proposed model can effectively recognize grape leaf diseases and has certain potential for practical applications.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

賈璐,葉中華.基于注意力機(jī)制和特征融合的葡萄病害識(shí)別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):223-233. JIA Lu, YE Zhonghua. Grape Disease Recognition Model Based on Attention Mechanism and Feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):223-233.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼