亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Mask R-CNN的柑橘主葉脈顯微圖像實(shí)例分割模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62005046)


Instance Segmentation Model for Microscopic Image of Citrus Main Leaf Vein Based on Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前植物解剖表型的測(cè)量與分析過(guò)程自動(dòng)化低,難以應(yīng)對(duì)復(fù)雜解剖表型的提取和識(shí)別的問(wèn)題,以柑橘主葉脈為研究對(duì)象,提出了一種基于掩膜區(qū)域卷積神經(jīng)網(wǎng)絡(luò)(Mask region convolutional neural network,Mask R-CNN)的主葉脈顯微圖像實(shí)例分割模型,以殘差網(wǎng)絡(luò)ResNet50和特征金字塔(Feature pyramid network,F(xiàn)PN)為主干特征提取網(wǎng)絡(luò),在掩膜(Mask)分支上添加一個(gè)新的感興趣區(qū)域?qū)R層(Region of interest Align,RoI-Align),提升Mask分支的分割精度。結(jié)果表明,該網(wǎng)絡(luò)架構(gòu)能夠精準(zhǔn)地對(duì)柑橘主葉脈橫切面中的髓部、木質(zhì)部、韌皮部和皮層細(xì)胞進(jìn)行識(shí)別分割。Mask R-CNN模型對(duì)髓部、木質(zhì)部、韌皮部和皮層細(xì)胞的分割平均精確率(交并比(IoU)為0.50)分別為98.9%、89.8%、95.7%和97.2%,對(duì)4個(gè)組織區(qū)域的分割平均精確率均值(IoU為0.50)為95.4%。與未在Mask分支添加RoI-Align的Mask R-CNN相比,精度提升1.6個(gè)百分點(diǎn)。研究結(jié)果表明,Mask R-CNN模型對(duì)柑橘主葉脈各類組織區(qū)域具有良好的識(shí)別分割效果,可為柑橘微觀表型研究提供技術(shù)支持與研究基礎(chǔ)。

    Abstract:

    There is a low efficiency of automatically measuring and analyzing plant anatomic phenotypes currently, which makes it difficult to well deal with the issue of extracting and recognizing the complex anatomical phenotypes. In order to solve this problem, a mask region convolutional neural network (Mask R-CNN) based instance segmentation model for microscopic images of the citrus main leaf veins was proposed. In this model, the deep residual network (ResNet50) and the feature pyramid network (FPN) were used as the backbone feature extraction network. In addition, a new region of interest Align (RoI-Align) layer was added to the Mask branch to improve the segmentation accuracy. The results showed that the network can accurately identify and segment pith, xylem, phloem and cortical cells, respectively, in the citrus main leaf veins. The average precision (IoU was 0.50) of the model for segmentation of pith, xylem, phloem and cortical cells was 98.9%, 89.8%, 95.7% and 97.2%, respectively, and the overall average precision (IoU was 0.50) for segmentation of the four tissue regions was 95.4%. The mean average precision of Mask R-CNN with adding RoI-Align to the Mask branch was improved by 1.6 percentage points compared with that without. The results showed that Mask R-CNN model presented good performance of recognition and segmentation of various tissue regions of citrus main leaf veins, which can provide technical support for citrus microscopic phenotyping.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

翁海勇,李效彬,肖康松,丁若晗,賈良權(quán),葉大鵬.基于Mask R-CNN的柑橘主葉脈顯微圖像實(shí)例分割模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):252-258,271. WENG Haiyong, LI Xiaobin, XIAO Kangsong, DING Ruohan, JIA Liangquan, YE Dapeng. Instance Segmentation Model for Microscopic Image of Citrus Main Leaf Vein Based on Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):252-258,271.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼