亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v5m的紅花花冠目標(biāo)檢測(cè)與空間定位方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

新疆維吾爾自治區(qū)自然科學(xué)基金項(xiàng)目(2022D01A177)


Safflower Corolla Object Detection and Spatial Positioning Methods Based on YOLO v5m
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)紅花采摘機(jī)器人田間作業(yè)時(shí)花冠檢測(cè)及定位精度不高的問(wèn)題,提出了一種基于深度學(xué)習(xí)的目標(biāo)檢測(cè)定位算法(Mobile safflower detection and position network,MSDP-Net)。針對(duì)目標(biāo)檢測(cè),本文提出了一種改進(jìn)的YOLO v5m網(wǎng)絡(luò)模型C-YOLO v5m,在YOLO v5m主干網(wǎng)絡(luò)和頸部網(wǎng)絡(luò)插入卷積塊注意力模塊,使模型準(zhǔn)確率、召回率、平均精度均值相較于改進(jìn)前分別提高4.98、4.3、5.5個(gè)百分點(diǎn)。針對(duì)空間定位,本文提出了一種相機(jī)移動(dòng)式空間定位方法,將雙目相機(jī)安裝在平移臺(tái)上,使其能在水平方向上進(jìn)行移動(dòng),從而使定位精度一直處于最佳范圍,同時(shí)避免了因花冠被遮擋而造成的漏檢。經(jīng)田間試驗(yàn)驗(yàn)證,移動(dòng)相機(jī)式定位成功率為93.79%,較固定相機(jī)式定位成功率提升9.32個(gè)百分點(diǎn),且在X、Y、Z方向上移動(dòng)相機(jī)式定位方法的平均偏差小于3mm。將MSDP-Net算法與目前主流目標(biāo)檢測(cè)算法的性能進(jìn)行對(duì)比,結(jié)果表明,MSDP-Net的綜合檢測(cè)性能均優(yōu)于其他5種算法,其更適用于紅花花冠的檢測(cè)。將MSDP-Net算法和相機(jī)移動(dòng)式定位方法應(yīng)用于自主研發(fā)的紅花采摘機(jī)器人上進(jìn)行采摘試驗(yàn)。室內(nèi)試驗(yàn)結(jié)果表明,在500次重復(fù)試驗(yàn)中,成功采摘451朵,漏采49朵,采摘成功率90.20%。田間試驗(yàn)結(jié)果表明,在選取壟長(zhǎng)為15m范圍內(nèi),盛花期紅花花冠采摘成功率大于90%。

    Abstract:

    Aiming at the problem of low accuracy of corolla detection and position during field operation of safflower picking robots, a deep learning-based object detection and position algorithm, mobile safflower detection and position network,MSDP-Net, was proposed. For object detection, an improved YOLO v5m model was proposed. By inserting the convolutional block attention module, the model precision, recall and mean average precision were improved by 4.98, 4.3 and 5.5 percentage points, respectively, compared with those before the improvement. For spatial position, a camera-moving spatial position method was proposed, which kept the position accuracy in the best range and avoided the missed detection caused by the obstructed corolla at the same time. The experimental verification showed that the success rate of mobile camera-based positioning was 93.79%, which was 9.32 percentage points higher than that of fixed camera-based positioning, and the average deviation of mobile camera-based positioning method in X, Y and Z directions was less than 3mm. The MSDP-Net algorithm had better performance compared with five mainstream object detection algorithms and was more suitable for the detection of safflower corolla. The MSDP-Net algorithm and the camera mobile position method were applied to the self-developed safflower picking robot for picking experiments. The indoor test results showed that among 500 replicate tests, totally 451 were successfully picked and 49 were missed, with a picking success rate of 90.20%. The field test results showed that the success rate of safflower corolla picking was greater than 90% within the selected monopoly length of 15m.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭輝,陳海洋,高國(guó)民,周偉,武天倫,邱兆鑫.基于YOLO v5m的紅花花冠目標(biāo)檢測(cè)與空間定位方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):272-281. GUO Hui, CHEN Haiyang, GAO Guomin, ZHOU Wei, WU Tianlun, QIU Zhaoxin. Safflower Corolla Object Detection and Spatial Positioning Methods Based on YOLO v5m[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):272-281.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼