亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于GA-SVR的熱源自適應(yīng)莖流檢測與調(diào)控系統(tǒng)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD1100602)和陜西省重點研發(fā)計劃項目(2021ZDLNY03-02)


Study of Heat Source Adaptive Stemflow Detection System Based on GA-SVR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    莖流測量是研究植物耗水規(guī)律的重要手段,現(xiàn)有莖流傳感器多基于熱平衡法進(jìn)行設(shè)計,但在低溫天氣時,植物蒸騰作用不明顯,莖流瞬時變化響應(yīng)不靈敏,導(dǎo)致測量結(jié)果不精確。針對上述問題,設(shè)計了一種熱源自適應(yīng)莖流檢測與調(diào)控系統(tǒng)。綜合考慮不同因素下莖流消耗在熱源提供能量占比中變化趨勢的建模需求,設(shè)計融合外界溫度、莖流速率、橫截面積等多環(huán)境因子莖流標(biāo)定嵌套試驗。在此基礎(chǔ)上,利用支持向量機(jī)回歸算法(Support vector regression,SVR)和遺傳算法(Genetic algorithm,GA),建立熱源功率自適應(yīng)模型。結(jié)果表明所建模型的最優(yōu)決定系數(shù)與均方根誤差分別為0.989和0.015W。基于LoRa無線傳感網(wǎng)絡(luò)構(gòu)建莖流檢測與調(diào)控系統(tǒng),實現(xiàn)多組溫度信息和熱源功率的監(jiān)測,系統(tǒng)調(diào)用移植到嵌入式設(shè)備的熱源自適應(yīng)模型動態(tài)獲取熱源功率調(diào)控目標(biāo)值,并發(fā)送至執(zhí)行控制器,控制功率調(diào)控模塊,實現(xiàn)熱源自適應(yīng)融合的功率動態(tài)控制。精度驗證試驗顯示:在低溫段時,本系統(tǒng)比FLOW-32KS型傳感器平均相對誤差小2.64(6℃)、2.53(11℃)、3.68個百分點(16℃)。在高溫段時,自適應(yīng)模型修正對結(jié)果影響不大,雙系統(tǒng)相對誤差互有高低。證明本系統(tǒng)嵌入基于熱平衡法的GA-SVR算法熱源自適應(yīng)模型后,能確保莖流消耗能量Qf在輸入總能量Pin中占比穩(wěn)定,滿足提高熱平衡莖流測量精度的需求。

    Abstract:

    Existing stemflow sensors based on the thermal equilibrium method are not accurate in measurement, and the stemflow response is not sensitive to transient changes when transpiration is not significant or when the external temperature is low. Therefore, an adaptive stemflow detection system of heat source power was proposed. Taking camphor stalks as the object, a nested experiment based on the thermal equilibrium method of stemflow calibration was designed by comprehensively considering the trend of the proportional change of stemflow in heat source energy, and the sample set of stemflow rates with multi-gradient under different environmental factors such as external temperature, stemflow rate and cross-sectional area were collected. A combined prediction model of heat source power based on support vector regression (SVR) and genetic algorithm (GA) was established. The results showed that the GA-SVR had good accuracy and robustness, its root mean square error (RMSE), mean absolute error (MAE) and determination coefficient (R2) were 0.015W, 0.012W and 0.989, respectively. The accuracy verification test suggested that the average relative error of the system was 2.64 percentage points (6℃), 2.53 percentage points (11℃) and 3.68 percentage points (16℃) smaller than that of the FLOW-32KS sensor in the low-temperature section. The adaptive model had a small effect on the correction of the results in the high-temperature section which was similar to FLOW-32KS. It was demonstrated that the stemflow detection system improved the accuracy of the heat balance stemflow measurement after embedding the GA-SVR heat source power adaptive model.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡瑾,孫章彤,馮盼,楊永霞,盧苗,侯軍英.基于GA-SVR的熱源自適應(yīng)莖流檢測與調(diào)控系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(7):290-299. HU Jin, SUN Zhangtong, FENG Pan, YANG Yongxia, LU Miao, HOU Junying. Study of Heat Source Adaptive Stemflow Detection System Based on GA-SVR[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):290-299.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼