亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于坐標(biāo)注意力機(jī)制和YOLO v5s模型的山羊臉部檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

安徽省自然科學(xué)基金項(xiàng)目(1908085QF284)和安徽省教育廳自然科學(xué)基金項(xiàng)目(KJ2021A0024)


Goat Face Detection Method by Combining Coordinate Attention Mechanism and YOLO v5s Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    山羊的臉部檢測對羊場的智能化管理有著重要的意義。針對實(shí)際飼養(yǎng)環(huán)境中,羊群存在多角度、分布隨機(jī)、靈活多變、羊臉檢測難度大的問題,以YOLO v5s為基礎(chǔ)目標(biāo)檢測網(wǎng)絡(luò),提出了一種結(jié)合坐標(biāo)信息的山羊臉部檢測模型。首先,通過移動設(shè)備獲取舍內(nèi)、舍外、單頭以及多頭山羊的圖像并構(gòu)建數(shù)據(jù)集。其次,在YOLO v5s的主干網(wǎng)絡(luò)融入坐標(biāo)注意力機(jī)制,以充分利用目標(biāo)的位置信息,提高遮擋區(qū)域、小目標(biāo)、多視角樣本的檢測精度。試驗(yàn)結(jié)果表明,改進(jìn)YOLO v5s模型的檢測精確率為95.6%,召回率為83.0%,mAP0.5為90.2%,幀速率為69f/s,模型內(nèi)存占用量為13.2MB;與YOLO v5s模型相比,檢測精度提高1.3個(gè)百分點(diǎn),模型所占內(nèi)存空間減少1.2MB;且模型的整體性能遠(yuǎn)優(yōu)于Faster R-CNN、YOLO v4、YOLO v5s模型。此外,本文構(gòu)建了不同光照和相機(jī)抖動的數(shù)據(jù)集,來進(jìn)一步驗(yàn)證本文方法的可行性。改進(jìn)后的模型可快速有效地對復(fù)雜場景下山羊的臉部進(jìn)行精準(zhǔn)檢測及定位,為動物精細(xì)化養(yǎng)殖時(shí)目標(biāo)檢測識別提供了檢測思路和技術(shù)支持。

    Abstract:

    Animal face detection is of great significance to the intelligent management of animal farm. At present, goats have the characteristics of multi angle, random distribution and flexibility in the actual feeding environment, which greatly increases the difficulty of goat face detection. Therefore, a goat face detection model combined with coordinate information was proposed based on YOLO v5s target detection network. Firstly, indoor, outdoor, single and multiple goat images were obtained by using mobile devices to build sample data sets. Secondly, coordinate attention mechanism (CA) was integrated into the backbone network of YOLO v5s to make full use of target position information and improve the target recognition accuracy in the occluded area, small target and multi view sample images. The proposed YOLO v5s-CA based approach achieved a precision of 95.6%, a recall of 83.0%, an mAP0.5 of 90.2%, a frame rate of 69f/s and a model size of 13.2MB. Compared with that of the original YOLO v5s model, the detection precision of YOLO v5s-CA was increased by 1.3 percentage points, and the memory space was reduced by 1.2MB. And the overall performance of the YOLO v5s-CA was better than that of the Faster R-CNN, YOLO v4 and YOLO v5s. Experimental results showed that the proposed YOLO v5s-CA approach can improve the detection precision of occluding and small targets by introducing target coordinate information. In addition, datasets with different lighting and camera shake were simulated and constructed to further verify the feasibility of the proposed method. Overall, the proposed deep learning-based goat face detection approach can quickly and effectively detect and locate goat faces in complex scenes, providing detection ideas and technical support for target detection and recognition in intelligent animal farm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭陽陽,洪文浩,丁屹,黃小平.基于坐標(biāo)注意力機(jī)制和YOLO v5s模型的山羊臉部檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):313-321. GUO Yangyang, HONG Wenhao, DING Yi, HUANG Xiaoping. Goat Face Detection Method by Combining Coordinate Attention Mechanism and YOLO v5s Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):313-321.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼