亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于點云語義分割的豬只體尺測量方法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河北省省級科技計劃項目(22326606D、20326620D)和國家留學基金委項目(202006705017)


Pigs Body Size Measurement Based on Point Cloud Semantic Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    生豬的體尺參數(shù)是生豬生長狀態(tài)的重要評判標準,而人工測量體尺耗時耗力且容易造成豬只的應激反應,本文研究了無接觸式豬只體尺參數(shù)測量方法,借鑒人工測量經(jīng)驗法,提出基于點云語義分割的豬只體尺測量方法。本文以大約克夏豬為研究對象,搭建無接觸式豬只點云采集平臺,采集3510組豬只雙側(cè)點云數(shù)據(jù);利用直通濾波器與隨機采樣一致性分割處理方法去除背景點云,基于統(tǒng)計濾波器去除離群點,采用體素下采樣方法稀疏點云,完成豬只點云的預處理;基于PointNet網(wǎng)絡(luò),結(jié)合注意力模塊構(gòu)建語義分割模型,針對不同分割部位設(shè)計豬只體尺測量方法。試驗結(jié)果表明,在自制數(shù)據(jù)集上,改進的語義分割模型準確率為86.3%,相較于PointNet、PointNet++和3D-RCNN分別高8、5.7、2.6個百分點;體尺的測量值與實測值最大絕對誤差為6.8cm,平均絕對誤差均在5cm以內(nèi),具有較高的估算準確性,此方法能夠用于豬只體尺測量。本文將語義分割與體尺測量相結(jié)合,可為后續(xù)非接觸測量提供思路。

    Abstract:

    The body size parameters of live pigs are important criterion for evaluating the growth state of pigs. The manual measurement of body size is time-consuming and labor-intensive and easy to cause the stress response of pigs. The non-contact pig body size parameter measurement method was studied, referencing the manual measurement experience method, and the pig body size measurement method was proposed based on point cloud semantic segmentation. A non-contact pig point cloud collection platform was established to collect bilateral point cloud data of 3510 groups of pigs. The background point cloud was removed by the pass-through filter and random sampling consistent segmentation method. The outliers were removed by statistical filter. The point cloud was sparsed by voxel downsampling method to complete the pretreatment of pig point cloud. Based on PointNet network and combined with attention module the semantic segmentation model was constructed. The measurement method of pig body size was designed for different parts of segmentation. The experimental results showed that the accuracy of the improved semantic segmentation model was 86.3%, which was higher than that of PointNet, PointNet++ and 3D-RCNN. The maximum absolute error between the measured value and true value was 6.8cm, and the average absolute error was within 5cm, which had a high estimation accuracy. The method can be used for the measurement of pig body size. The research combined semantic segmentation with body size measurement, which can provide an idea for the non-contact measurement.

    參考文獻
    相似文獻
    引證文獻
引用本文

耿艷利,季燕凱,岳曉東,付艷芳.基于點云語義分割的豬只體尺測量方法研究[J].農(nóng)業(yè)機械學報,2023,54(7):332-338,380. GENG Yanli, JI Yankai, YUE Xiaodong, FU Yanfang. Pigs Body Size Measurement Based on Point Cloud Semantic Segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):332-338,380.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼