亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于BiLSTM-GRU融合網(wǎng)絡(luò)的稻蝦養(yǎng)殖溶解氧含量預(yù)測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021TZXD006)


Dissolved Oxygen Prediction in Rice and Shrimp Culture Based on BiLSTM-GRU Fusion Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在稻蝦養(yǎng)殖模式中溶解氧含量(濃度)是養(yǎng)殖水體的重要指標(biāo)之一,其直接影響小龍蝦的攝食量和新陳代謝,因此在養(yǎng)殖過(guò)程中精準(zhǔn)預(yù)測(cè)溶解氧含量至關(guān)重要。針對(duì)稻蝦養(yǎng)殖中溶解氧含量變化復(fù)雜,難以快速準(zhǔn)確預(yù)測(cè)的問(wèn)題,提出了BiLSTM-GRU融合神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型。為了保證精準(zhǔn)預(yù)測(cè),首先對(duì)傳感器進(jìn)行了清洗校準(zhǔn),并根據(jù)偏移量對(duì)歷史數(shù)據(jù)進(jìn)行了修正。在此基礎(chǔ)上構(gòu)建了基于BiLSTM和GRU的融合神經(jīng)網(wǎng)絡(luò)訓(xùn)練模型,BiLSTM提取更多特征因子,GRU實(shí)現(xiàn)快速預(yù)測(cè),快速準(zhǔn)確預(yù)測(cè)溶解氧含量變化。為了使監(jiān)測(cè)預(yù)測(cè)性能更優(yōu),對(duì)不同采樣周期下的資源損耗及預(yù)測(cè)模型性能進(jìn)行綜合對(duì)比分析,確定了傳感器數(shù)據(jù)最優(yōu)采樣周期為30min。進(jìn)一步與LSTM、GRU、BiLSTM以及BiGRU模型對(duì)比,表明本文提出的BiLSTM-GRU融合神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)效果更好,其平均絕對(duì)誤差、均方根誤差和決定系數(shù)分別為0.2759mg/L、0.6160mg/L和0.9547,比傳統(tǒng)的LSTM神經(jīng)網(wǎng)絡(luò)模型分別高25.14%、13.25%和2.22%。

    Abstract:

    Dissolved oxygen is an essential parameter for monitoring water quality in rice-prawn farming, as it plays a significant role in crayfish feeding and metabolism. Accurately predicting dissolved oxygen content is critical for maintaining optimal farming conditions and preventing environmental damage. However, dissolved oxygen levels can be challenging to predict due to the complexity of the factors affecting them. A BiLSTM-GRU fusion neural network prediction model that can overcome these challenges was proposed. The model combined the benefits of BiLSTM, which extracted more feature factors, and GRU, which achieved fast and accurate prediction. The sensors and corrected historical data were cleaned and calibrated based on the offset to ensure accuracy. A comprehensive analysis of the resource consumption and prediction performance of the model under different sampling periods was conducted and it was determined that 30 minutes was the optimal sampling period. The proposed model was compared with traditional LSTM, GRU, BiLSTM, and BiGRU models, which was found that the model was demonstrated better prediction performance, with mean absolute error, root mean square error, and determination coefficient of 0.2759mg/L, 0.6160mg/L, and 0.9547, respectively. These values were 25.14%, 13.25%, and 2.22% higher than those of the traditional LSTM neural network model. Overall, the proposed BiLSTM-GRU fusion neural network prediction model had significant potential for improving the accuracy of dissolved oxygen content prediction in riceprawn farming.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

石慶蘭,束金陽(yáng),李道亮,黃凱欣,查海涅.基于BiLSTM-GRU融合網(wǎng)絡(luò)的稻蝦養(yǎng)殖溶解氧含量預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):364-370. SHI Qinglan, SHU Jinyang, LI Daoliang, HUANG Kaixin, ZHA Hainie. Dissolved Oxygen Prediction in Rice and Shrimp Culture Based on BiLSTM-GRU Fusion Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):364-370.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-29
  • 出版日期:
文章二維碼