亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于計算機視覺的魚類低氧脅迫行為檢測與跟蹤算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(62076244)和山東省科技廳項目(2022LYXZ012)


Detection and Tracking Algorithm of Fish Hypoxia Stress Behavior Based on Computer Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了能準確檢測、跟蹤加州鱸魚因水中溶解氧含量低產生的脅迫行為,本文構建了一種改進的YOLO v5與DeepSORT組合網(wǎng)絡算法。在算法方面提出2個改進方案:在原YOLO v5的Backbone和Neck中分別加入2個基于移位窗口的自注意力Swin Transformer模塊,提升了網(wǎng)絡對目標特征信息的提取能力,以此提升原模型的檢測效果;采用Warmup和Cosine Annealing結合的學習率策略,使多目標跟蹤算法DeepSORT前期收斂速度更快、更穩(wěn)定。實驗結果表明,在目標檢測方面,相對于原YOLO v5,改進的YOLO v5的mAP@0.5、mAP@0.5:0.95和召回率分別提升1.9、1.3、0.8個百分點,在不完全遮擋情況下,改進的算法表現(xiàn)出更好的檢測效果。在目標跟蹤方面,DeepSORT算法的MOTA、MOTP和IDF1分別提升4.0、0.7、10.7個百分點,并且加州鱸魚在遮擋前后的ID切換頻率得到明顯抑制。改進的YOLO v5與DeepSORT跟蹤算法更適合于檢測、跟蹤加州鱸魚的低氧脅迫行為,能夠為加州鱸魚的養(yǎng)殖提供技術支持。

    Abstract:

    In order to accurately detect and track the stress behavior of micropterus salmoides due to low dissolved oxygen content in water, an improved YOLO v5 and DeepSORT combined network algorithm was constructed. In terms of algorithm, two improvement schemes were proposed: two self-attention Swin Transformer modules based on shifted windows were added to the Backbone and Neck of the original YOLO v5, which improved the network's ability to extract target feature information, thereby improving the detection effect of the original model; the learning rate strategy combined with Warmup and Cosine Annealing made the convergence speed of the multi-target tracking algorithm DeepSORT faster and more stable in the early stage. The experimental results showed that in terms of target detection, compared with the original YOLO v5, the mAP@0.5, mAP@0.5:0.95 and recall rate of the improved YOLO v5 were increased by 1.9, 1.3 and 0.8 percentage points, respectively. In the case of incomplete occlusion, the improved algorithm could show better detection results. In terms of target tracking, the MOTA, MOTP, and IDF1 of the DeepSORT algorithm were increased by 4.0, 0.7 and 10.7 percentage points respectively, and the ID switching frequency of micropterus salmoides before and after occlusion was significantly suppressed. The improved YOLO v5 and DeepSORT tracking algorithms were more suitable for detecting and tracking the hypoxic stress behavior of micropterus salmoides, and can provide technical support for the breeding of micropterus salmoides.

    參考文獻
    相似文獻
    引證文獻
引用本文

李道亮,姜國旗,楊建安,白羽,謝琰,王承國.基于計算機視覺的魚類低氧脅迫行為檢測與跟蹤算法[J].農業(yè)機械學報,2023,54(10):399-406. LI Daoliang, JIANG Guoqi, YANG Jian'an, BAI Yu, XIE Yan, WANG Chengguo. Detection and Tracking Algorithm of Fish Hypoxia Stress Behavior Based on Computer Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):399-406.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-15
  • 出版日期:
文章二維碼