亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v5-Jetson TX2的秸稈覆蓋農(nóng)田雜草檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1500704)


Weed Detection Method of Straw-covered Farmland Based on YOLO v5-Jetson TX2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    玉米苗期雜草的實(shí)時(shí)檢測(cè)和精準(zhǔn)識(shí)別是實(shí)現(xiàn)精準(zhǔn)除草和智能農(nóng)業(yè)的基礎(chǔ)和前提。針對(duì)保護(hù)性耕作模式地表環(huán)境復(fù)雜、雜草易受地表秸稈殘茬覆蓋影響、現(xiàn)有算法檢測(cè)速度不理想等問題,提出一種適用于Jetson TX2移動(dòng)端部署的秸稈覆蓋農(nóng)田雜草檢測(cè)方法。運(yùn)用深度學(xué)習(xí)技術(shù)對(duì)玉米苗期雜草圖像的高層語(yǔ)義信息進(jìn)行提取與分析,構(gòu)建玉米苗期雜草檢測(cè)模型。在YOLO v5s模型的基礎(chǔ)上,縮小網(wǎng)絡(luò)模型寬度對(duì)其進(jìn)行輕量化改進(jìn)。為平衡模型檢測(cè)速度和檢測(cè)精度,采用TensorRT推理加速框架解析網(wǎng)絡(luò)模型,融合推理網(wǎng)絡(luò)中的維度張量,實(shí)現(xiàn)網(wǎng)絡(luò)結(jié)構(gòu)的重構(gòu)與優(yōu)化,減少模型運(yùn)行時(shí)的算力需求。將模型遷移部署至Jetson TX2移動(dòng)端平臺(tái),并對(duì)各模型進(jìn)行訓(xùn)練測(cè)試。檢測(cè)結(jié)果表明,輕量化改進(jìn)YOLO v5ss、YOLO v5sm、YOLO v5sl模型的精確率分別為85.7%、94%、95.3%,檢測(cè)速度分別為80、79.36、81.97f/s,YOLO v5sl模型綜合表現(xiàn)最佳。在Jetson TX2嵌入式端推理加速后,YOLO v5sl模型的檢測(cè)精確率為93.6%,檢測(cè)速度為28.33f/s,比模型加速前提速77.8%,能夠在保證檢測(cè)精度的同時(shí)實(shí)現(xiàn)玉米苗期雜草目標(biāo)的實(shí)時(shí)檢測(cè),為硬件資源有限的田間精準(zhǔn)除草作業(yè)提供技術(shù)支撐。

    Abstract:

    The foundation and premise of implementing precision weeding and intelligent agriculture is the real-time detection and precise identification of weeds in the corn seedling stage. A method for weed detection in straw-covered farmland suitable for the deployment of Jetson TX2 mobile terminal was proposed. This method addressed the issue that the surface environment of conservation tillage mode was complex, weeds were primarily covered by straw residues on the surface, and the detection speed of existing algorithms was not ideal. Building a corn seedling weed identification model by extracting and analyzing the highlevel semantic information from corn seedling weed photos by using deep learning technology. Based on the YOLO v5s model, the network model’s width was decreased to make minor adjustments that balance the model’s detection speed and accuracy. The network model was analyzed by using the TensorRT reasoning acceleration framework, and the integration of the dimensional tensor into the reasoning network allows for the reconstruction and optimization of the network structure while also lowering the computational demand for the model to operate. Each model was trained and tested before migrating and deploying it to the Jetson TX2 mobile platform. The test findings demonstrated that the lightweight enhanced YOLO v5ss, YOLO v5sm, and YOLO v5sl models, which had accuracy rates of 85.7%, 94%, and 95.3%, respectively. The detection speed were sequentially 80f/s, 79.36f/s, 81.97f/s. The YOLO v5sl model’s detection accuracy was 93.6% after Jetson TX2 embedded reasoning acceleration, and its average running time for a single frame image was 35.3ms, which was 77.8% faster than it was before acceleration. It can achieve the detection of corn seedlings while guaranteeing the accuracy of the detection. The real-time detection of weed targets provided technical support for precise weeding operations in fields with limited hardware resources.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王秀紅,王慶杰,李洪文,何進(jìn),盧彩云,張馨悅.基于YOLO v5-Jetson TX2的秸稈覆蓋農(nóng)田雜草檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):39-48. WANG Xiuhong, WANG Qingjie, LI Hongwen, HE Jin, LU Caiyun, ZHANG Xinyue. Weed Detection Method of Straw-covered Farmland Based on YOLO v5-Jetson TX2[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):39-48.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼