亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v4的籠養(yǎng)蛋鴨行為實(shí)時(shí)識(shí)別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2662020GXPY005)


Method for Real-time Behavior Recognition of Cage-reared Laying Ducks Based on Improved YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    蛋鴨行為模式是判斷籠養(yǎng)鴨養(yǎng)殖過程中健康狀況及福利狀態(tài)的重要指標(biāo),為了通過機(jī)器視覺實(shí)現(xiàn)識(shí)別蛋鴨多行為模式,提出了一種基于改進(jìn)YOLO v4 (You only look once)的目標(biāo)檢測算法,不同的行為模式為蛋鴨的養(yǎng)殖管理方案提供依據(jù)。本文算法通過更換主干特征提取網(wǎng)絡(luò)MobileNetV2,利用深度可分離卷積模塊,在提升檢測精度的同時(shí)降低模型參數(shù)量,有效提升檢測速度。在預(yù)測輸出部分引入無參數(shù)的注意力機(jī)制SimAM模塊,進(jìn)一步提升模型檢測精度。通過使用本文算法對籠養(yǎng)蛋鴨行為驗(yàn)證集進(jìn)行了檢測,優(yōu)化后模型平均精度均值達(dá)到96.97%,圖像處理幀率為49.28f/s,相比于原始網(wǎng)絡(luò)模型,平均精度均值及處理速度分別提升5.03%和88.24%。與常用目標(biāo)檢測網(wǎng)絡(luò)進(jìn)行效果對比,改進(jìn)YOLO v4網(wǎng)絡(luò)相較于Faster R-CNN、YOLO v5、YOLOX的檢測平均精度均值分別提升12.07%、30.6%及2.43%。將本文提出的改進(jìn)YOLO v4網(wǎng)絡(luò)進(jìn)行試驗(yàn)研究,試驗(yàn)結(jié)果表明本文算法可以準(zhǔn)確地對不同時(shí)段的籠養(yǎng)蛋鴨行為進(jìn)行記錄,根據(jù)蛋鴨表現(xiàn)出的不同行為模式來幫助識(shí)別蛋鴨的異常情況,如部分行為發(fā)生異常時(shí)長或在異常時(shí)段發(fā)生等,從而為蛋鴨的養(yǎng)殖管理提供有價(jià)值的指導(dǎo),為實(shí)現(xiàn)鴨舍自動(dòng)化、智能化管理提供技術(shù)支持。

    Abstract:

    The laying duck behavior pattern is an important indicator for assessing the health and welfare status of ducks in cage farming. An object detection algorithm based on improved YOLO v4 (you only look once) was proposed to identify multiple behavior patterns in laying ducks by machine vision, and the different behavior patterns provided a basis for duck breeding management scheme. By replacing the backbone feature extraction network MobileNetV2 and using the depthwise separable convolution, this algorithm can improve the detection accuracy while reducing the number of model parameters and effectively improving the detection speed. The parameter-free attention mechanism SimAM module was introduced in the prediction output part to further improve the model detection accuracy. By using this algorithm to detect the cage-reared laying duck behavior validation set, the mAP value of the optimized model reached 96.97% and the image processing frame rate was 49.28f/s, which improved the mAP and processing speed by 5.03% and 88.24%, respectively, compared with the original network model. Comparing the effect with commonly used object detection networks, the improved YOLO v4 network improved the mAP values by 12.07%, 30.6% and 2.43% compared with Faster R-CNN, YOLO v5 and YOLOX, respectively. The improved YOLO v4 network proposed was experimentally studied. The results showed that this algorithm can accurately record the behaviors of cage-reared ducks at different time periods, helping identify abnormal conditions of ducks according to the different behavior patterns exhibited by ducks, such as some behaviors occurring for abnormal periods of time or during abnormal periods. The research result can provide valuable guidance for duck breeding management and enable technical support for implementing automated and intelligent management of duck houses.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

谷月,王樹才,嚴(yán)煜,衡一帆,龔東軍,唐詩杰.基于改進(jìn)YOLO v4的籠養(yǎng)蛋鴨行為實(shí)時(shí)識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):266-276. GU Yue, WANG Shucai, YAN Yu, HENG Yifan, GONG Dongjun, TANG Shijie. Method for Real-time Behavior Recognition of Cage-reared Laying Ducks Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):266-276.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼