亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)DeepLabv3+的水稻田間雜草識(shí)別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0300700)和遼寧省教育廳重點(diǎn)攻關(guān)項(xiàng)目(JYFZD2023123)


Weed Identification Method in Rice Field Based on Improved DeepLabv3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)實(shí)際稻田環(huán)境中水稻與雜草相互遮擋、難以準(zhǔn)確區(qū)分的問題,提出一種基于改進(jìn)DeepLabv3+的水稻雜草識(shí)別方法。以無人機(jī)航拍的復(fù)雜背景下稻田雜草圖像為研究對(duì)象,在DeepLabv3+模型的基礎(chǔ)上,選擇輕量級(jí)網(wǎng)絡(luò)MobileNetv2作為主干特征提取網(wǎng)絡(luò),以減少模型參數(shù)量和降低計(jì)算復(fù)雜度;融合通道和空間雙域注意力機(jī)制模塊,加強(qiáng)模型對(duì)重要特征的關(guān)注;提出一種基于密集采樣的多分支感受野級(jí)聯(lián)融合結(jié)構(gòu)對(duì)空洞空間金字塔池化模塊(ASPP)進(jìn)行改進(jìn),擴(kuò)大對(duì)全局和局部元素特征的采樣范圍;對(duì)模型解碼器部分進(jìn)行改進(jìn)。設(shè)置消融試驗(yàn)驗(yàn)證改進(jìn)方法的有效性,并與改進(jìn)前DeepLabv3+、UNet、PSPNet、HrNet模型進(jìn)行對(duì)比試驗(yàn)。試驗(yàn)結(jié)果表明,改進(jìn)后模型對(duì)水稻田間雜草的識(shí)別效果最佳,其平均交并比(MIoU)、平均像素準(zhǔn)確率(mPA)、F1值分別為90.72%、95.67%、94.29%,較改進(jìn)前模型分別提高3.22、1.25、2.65個(gè)百分點(diǎn);改進(jìn)后模型內(nèi)存占用量為11.15MB,約為原模型的1/19,網(wǎng)絡(luò)推算速度為103.91f/s。結(jié)果表明改進(jìn)后模型能夠?qū)崿F(xiàn)復(fù)雜背景下水稻與雜草分割,研究結(jié)果可為無人機(jī)精準(zhǔn)施藥提供技術(shù)支撐。

    Abstract:

    To address the challenges of mutual occlusion and accurate differentiation between rice and weeds in real-world environments, an improved method for rice-weed recognition was proposed based on DeepLabv3+. The research focused on images of rice field weeds captured by UAV in complex backgrounds, the MobileNetv2 was used as the backbone feature extraction network to reduce the number of parameters and computational complexity of the model; channel and spatial dual-domain attention modules were integrated to strengthen the model's attention to important features. A multi-branch receptive field cascade fusion structure was proposed based on dense sampling to improve the ASPP module to expand the sampling range. In addition, improvements to the decoder were made. Experimental results demonstrated that the improved model achieved the best performance in rice-weed recognition, with a mean intersection over union (MIoU) of 90.72%, mean pixel accuracy (mPA) of 95.67%, and F1_score of 94.29%, which were 3.22, 1.25, and 2.65 percentage points higher than that of the basic model. The improved model had a size of 11.15MB, which was 1/19 of the original model's size, and achieved an average network inference speed of 103.91 frames per second per image. The results demonstrated that the improved model can accurately segment rice and weeds in complex backgrounds, supporting precise pesticide application using UAV.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

曹英麗,趙雨薇,楊璐璐,李靜,秦列列.基于改進(jìn)DeepLabv3+的水稻田間雜草識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):242-252. CAO Yingli, ZHAO Yuwei, YANG Lulu, LI Jing, QIN Lielie. Weed Identification Method in Rice Field Based on Improved DeepLabv3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):242-252.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-09
  • 出版日期:
文章二維碼