亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)DeepLabv3+的番茄圖像多類別分割方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(52065033)和云南省科技廳重大專項(xiàng)(2022AG050002-4)


Multi-category Segmentation Method of Tomato Image Based on Improved DeepLabv3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    番茄圖像中多類別目標(biāo)的準(zhǔn)確識別是實(shí)現(xiàn)自動化采摘的技術(shù)前提,針對現(xiàn)有網(wǎng)絡(luò)分割精度低、模型參數(shù)多的問題,提出一種基于改進(jìn)DeepLabv3+的番茄圖像多類別分割方法。該方法使用幻象網(wǎng)絡(luò)(GhostNet)和坐標(biāo)注意力模塊(Coordinate attention,CA)構(gòu)建CA-GhostNet作為DeepLabv3+的主干特征提取網(wǎng)絡(luò),減少網(wǎng)絡(luò)的參數(shù)量并提高模型的分割精度,并設(shè)計(jì)了一種多分支解碼結(jié)構(gòu),用于提高模型對小目標(biāo)類別的分割能力。在此基礎(chǔ)上,基于單、雙目小樣本數(shù)據(jù)集使用合成數(shù)據(jù)集的權(quán)值參數(shù)進(jìn)行遷移訓(xùn)練,對果實(shí)、主干、側(cè)枝、吊線等8個(gè)語義類別進(jìn)行分割。結(jié)果表明,改進(jìn)的DeepLabv3+模型在單目數(shù)據(jù)集上的平均交并比(MIoU)和平均像素準(zhǔn)確率(MPA)分別為68.64%、78.59%,在雙目數(shù)據(jù)集上的MIoU和MPA分別達(dá)到73.00%、80.59%。此外,所提模型內(nèi)存占用量僅為18.5MB,單幅圖像推理時(shí)間為55ms,與基線模型相比,在單、雙目數(shù)據(jù)集上的MIoU分別提升6.40、6.98個(gè)百分點(diǎn),與HRNet、UNet、PSPNet相比,內(nèi)存占用量壓縮82%、79%、88%。該研究可為番茄采摘機(jī)器人的智能采摘和安全作業(yè)提供參考。

    Abstract:

    Accurate identification of multi-category targets in tomato images is the technical premise for automatic picking. Aiming at the problems of low segmentation accuracy and the large number of model parameters in existing networks, a multi-category segmentation method based on improved DeepLabv3+ was proposed for tomato images. The method used GhostNet and coordinate attention (CA) to construct CA-GhostNet as the backbone feature extraction network of DeepLabv3+, reducing the number of parameters in the network. And a multi-branch decoding structure was designed to improve the segmentation accuracy of the model for small target categories. Then the weight parameters of the synthesized dataset were used for migration training based on the single and binocular small sample dataset. Eight semantic categories such as fruit, trunk, branch and thin line were segmented. The results showed that mean intersection over union (MIoU) and mean pixel accuracy (MPA) of improved DeepLabv3+ model were 68.64% and 78.59% on the monocular dataset, respectively. The MIoU and MPA were 73.00% and 80.59% on the binocular dataset. In addition, the memory occupation of the proposed model was only 18.5MB, and the inference time of a single image was 55ms. Compared with the baseline model, the MIoU on the monocular and binocular datasets was increased by 6.40 percentage points and 6.98 percentage points, respectively. Compared with HRNet, UNet and PSPNet, the memory occupation was reduced by 82%, 79% and 88%, respectively. The research result can provide reference for intelligent picking and safe operation of tomato picking robot.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

顧文娟,魏金,陰艷超,劉孝保,丁燦.基于改進(jìn)DeepLabv3+的番茄圖像多類別分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):261-271. GU Wenjuan, WEI Jin, YIN Yanchao, LIU Xiaobao, DING Can. Multi-category Segmentation Method of Tomato Image Based on Improved DeepLabv3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):261-271.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-30
  • 出版日期:
文章二維碼