亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

RGB-D SLAM增強(qiáng)現(xiàn)實(shí)原木檢尺系統(tǒng)構(gòu)建與測(cè)試
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項(xiàng)目(2020A1515110253)


Construction and Testing of RGB-D SLAM Augmented Reality Log Measurement System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    將內(nèi)嵌有ToF相機(jī)、面陣相機(jī)及IMU的智能手機(jī)作為硬件系統(tǒng),RGB-D SLAM技術(shù)實(shí)時(shí)獲取的深度圖、位姿等為數(shù)據(jù)源,構(gòu)建了RGB-D SLAM增強(qiáng)現(xiàn)實(shí)楞堆原木檢尺系統(tǒng)。首先設(shè)計(jì)了基于ToF影像實(shí)時(shí)估計(jì)RGB影像像素深度的方法,實(shí)現(xiàn)對(duì)待測(cè)原木端面幾何坐標(biāo)的初步估計(jì);其次,設(shè)計(jì)了散形分區(qū)去噪算法實(shí)現(xiàn)原木端面點(diǎn)云的精確過(guò)濾,設(shè)計(jì)了原木端面曲率估計(jì)算法實(shí)現(xiàn)對(duì)過(guò)濾點(diǎn)云可靠性判別;然后,基于PCA等算法實(shí)現(xiàn)原木長(zhǎng)、短直徑方向向量估計(jì),并基于該向量對(duì)原木長(zhǎng)、短直徑進(jìn)行了估計(jì);最后,以所構(gòu)建算法為基礎(chǔ)在智能手機(jī)平臺(tái)上搭建了增強(qiáng)現(xiàn)實(shí)楞堆檢尺系統(tǒng),實(shí)現(xiàn)智能手機(jī)對(duì)原木進(jìn)行實(shí)時(shí)檢尺、增強(qiáng)現(xiàn)實(shí)場(chǎng)景對(duì)測(cè)量結(jié)果實(shí)時(shí)監(jiān)督。新型檢尺系統(tǒng)通過(guò)對(duì)6個(gè)楞堆334根原木進(jìn)行了檢尺實(shí)驗(yàn),以評(píng)估該設(shè)備的測(cè)量精度。結(jié)果顯示:原木平均直徑估計(jì)值的偏差及均方根誤差分別為-0.13cm(-0.35%)及1.05cm(3.34%);原木徑階化直徑估計(jì)值的偏差及均方根誤差分別為-0.10cm(-0.22%)及1.33cm(4.43%);原木材積估計(jì)值的偏差及均方根誤差分別為-0.007m3(-0.27%)及0.0939m3(7.23%);楞堆材積相對(duì)誤差絕對(duì)值均不大于2.23%,所有楞堆總材積相對(duì)誤差為-0.68%。無(wú)論從單根原木還是楞堆角度來(lái)看,材積等測(cè)量結(jié)果均無(wú)偏且高精度,說(shuō)明原木檢尺系統(tǒng)是一種可高精度、高魯棒性實(shí)時(shí)完成楞堆原木檢尺的潛在方案。

    Abstract:

    The RGB-D SLAM augmented reality log measurement system was constructed, which used a smart phone embedded with a ToF camera, RGB camera and IMU as the hardware system, and used the depth map and pose acquired by RGB-D SLAM technology as the data source. Specifically, the method for online estimating the pixel depth of RGB images was designed based on ToF images in order to preliminarily estimate the position of log end faces; secondly, a denoising algorithm based on discrete partitioning and a log end face curvature estimation algorithm were designed for precisely filtering the log end point cloud and evaluating the reliability of the filtering results; then, the PCA algorithm was used to estimate the length and diameter direction vector of the log, which was used to estimate the value of the length and diameter of the log; and finally, the algorithm was used to build a log measurement system on the mobile phone platform, so as to realize the online measurement of the log diameter by using the smart phone, and the online supervision of the measurement results by using the augmented reality scene. The system was tested by measuring 334 logs in six regions to evaluate the measurement accuracy. The results showed that the bias and root mean square error (RMSE) of the log diameter estimates were -0.13cm (-0.35%) and 1.05cm (3.34%) respectively; the bias and RMSE of the log stepping diameter estimates were -0.10cm (-0.22%) and 1.33cm (4.43%) respectively; the bias and RMSE of the log volume estimates were -0.007m3(-0.27%) and 0.0939m3(7.23%) respectively; the absolute value of the relative error of the volume of log pile was no more than 2.23%; and the error of the total volume of all log piles was -0.68%. Obviously, no matter from the point of view of a single log or a pile, the measurement results were unbiased and high-precision, which meant that the new log measuring system was a potential highprecision, high-robust real-time log measuring potential solutions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

范永祥,馮仲科,蘇玨穎,韋澤波,申朝永,閆飛. RGB-D SLAM增強(qiáng)現(xiàn)實(shí)原木檢尺系統(tǒng)構(gòu)建與測(cè)試[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):280-287. FAN Yongxiang, FENG Zhongke, SU Jueying, WEI Zebo, SHEN Chaoyong, YAN Fei. Construction and Testing of RGB-D SLAM Augmented Reality Log Measurement System[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):280-287.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-27
  • 出版日期:
文章二維碼