亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜和機器學習模型的冬小麥土壤含水率監(jiān)測研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(52179045)


Monitoring of Soil Moisture Content of Winter Wheat Based on Hyperspectral and Machine Learning Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為及時獲取大田作物根區(qū)土壤含水率(Soil moisture content, SMC),實現(xiàn)精準灌溉,運用高光譜技術(shù),通過連續(xù)2年(2019—2020年)田間試驗采集了冬小麥拔節(jié)期不同土層深度SMC及高光譜數(shù)據(jù),構(gòu)建了3類植被指數(shù)(藍、黃和紅邊面積等三邊光譜參數(shù),與冬小麥根區(qū)SMC相關(guān)性最高的任意兩波段植被指數(shù)和前人研究與作物參數(shù)相關(guān)性較好的經(jīng)驗植被指數(shù))并篩選與各土層深度SMC相關(guān)系數(shù)最高的植被指數(shù),隨后將篩選后的植被指數(shù)作為模型輸入,分別采用隨機森林(Random forest,RF)、反向神經(jīng)網(wǎng)絡(luò)(Back propagation neural network,BPNN)和極限學習機(Extreme learning machine,ELM)構(gòu)建冬小麥拔節(jié)期不同土層深度SMC估算模型。結(jié)果表明,絕大部分三邊參數(shù)、任意兩波段植被指數(shù)和經(jīng)驗植被指數(shù)在深度0~20cm土層的SMC相關(guān)系數(shù)較20~40cm和40~60cm更高,在深度0~20cm土層兩波段組合構(gòu)建的光譜指數(shù)與SMC的相關(guān)系數(shù)最高,均超過0.8,其中RI與SMC的相關(guān)系數(shù)最高,為0.851,其波長組合為675nm和695nm。RF模型是SMC的最佳建模方法,其中深度0~20cm土層的模型精度最高,估算模型驗證集的決定系數(shù)R2達0.909,均方根誤差(RMSE)為0.008,平均相對誤差(MRE)為3.949%。本研究結(jié)果可為高光譜監(jiān)測冬小麥根區(qū)SMC提供依據(jù),為快速評估水分脅迫下的作物生長提供應用參考。

    Abstract:

    Aiming to promptly obtain soil moisture content (SMC) in the root zone of field crops for precise irrigation, hyperspectral technology was utilized. Over a 2year period spanning from 2019 to 2020, during the winter wheat jointing stage, SMC data at varying soil depths and hyperspectral data were collected. Three categories of vegetation indices were created, comprising ‘trilateral’ spectral parameters related to blue, yellow, and rededge areas, any two-band vegetation indices with the highest correlation to winter wheat root zone SMC, and empirical vegetation indices showing good correlation with crop parameters from previous studies. The vegetation indices exhibited the highest correlation with SMC at different soil depths were selected. Subsequently, random forest (RF), back propagation neural network (BPNN), and extreme learning machine (ELM) were employed to construct SMC estimation models, using the selected vegetation indices as model inputs. The results revealed that a majority of the ‘trilateral’ spectral parameters spectral indices, any two-band vegetation indices, and empirical vegetation indices displayed stronger correlations with SMC in the 0~20cm soil layer in comparison with the 20~40cm and 40~60cm layers. The two-band combinations in the 0~20cm layer exhibited the highest correlations with SMC, all surpassing 0.8. Among which, RI showed the highest correlation with SMC at 0.851, utilizing a wavelength combination of 675nm and 695nm. The RF model emerged as the most effective modeling method for SMC, with the highest accuracy observed in the 0~20cm soil layer. The coefficient of determination (R2) for the validation set of the estimation model in the 0~20cm layer reached 0.909, and the root mean square error (RMSE) was 0.008, while the mean relative error (MRE) was 3.949%. The outcomes can serve as a foundation for hyperspectral monitoring of winter wheat root zone SMC and provide valuable insights for the rapid assessment of crop growth under water stress.

    參考文獻
    相似文獻
    引證文獻
引用本文

唐子竣,張威,向友珍,李志軍,張富倉,陳俊英.基于高光譜和機器學習模型的冬小麥土壤含水率監(jiān)測研究[J].農(nóng)業(yè)機械學報,2023,54(12):350-358. TANG Zijun, ZHANG Wei, XIANG Youzhen, LI Zhijun, ZHANG Fucang, CHEN Junying. Monitoring of Soil Moisture Content of Winter Wheat Based on Hyperspectral and Machine Learning Models[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):350-358.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-06-28
  • 出版日期:
文章二維碼