亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Opt-MobileNetV3的大豆種子異常籽粒識別研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

黑龍江省教育廳基本科研業(yè)務(wù)費(fèi)基礎(chǔ)研究項目(2022-KYYWF-0589)、黑龍江省自然科學(xué)基金聯(lián)合引導(dǎo)項目(LH2023C059)和國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(202210222104)


Abnormal Soybean Grains Recognition Based on Opt-MobileNetV3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對大豆異常籽粒識別模型參數(shù)量過大、計算成本高、準(zhǔn)確率較低等問題,提出了一種改進(jìn)的輕量級神經(jīng)網(wǎng)絡(luò)MobileNetV3模型,將其層數(shù)減少,加快模型的訓(xùn)練和推理速度,增加全連接層和Softmax層以增加模型的非線性判別能力以及利于多分類任務(wù)的輸出,使用全局平均池化代替全局最大池化減少信息丟失,通過添加Dropout層以及去掉MobileNetV3中SE Block注意力機(jī)制來增加模型的泛化能力。試驗結(jié)果表明:將大豆籽粒圖像數(shù)據(jù)經(jīng)過傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)AlexNet、VGG16與輕量級神經(jīng)網(wǎng)絡(luò)MobilenetV3訓(xùn)練測試結(jié)果進(jìn)行對比,AlexNet算法最終平均精度均值(Mean average precision,mAP)為87.3%、VGG16算法為87.7%,二者mAP相差較小,但兩者在訓(xùn)練過程中模型內(nèi)存占用量及訓(xùn)練時間相差較大,其中AlexNet模型內(nèi)存占用量為7070kB,訓(xùn)練時間為5420.59s,而VGG16模型內(nèi)存占用量為19674kB,訓(xùn)練時間為8282.68s,整體來看AlexNet相對更好。通過對輕量級神經(jīng)網(wǎng)絡(luò)MobileNetV3模型的識別訓(xùn)練,最終模型內(nèi)存占用量為32153kB,訓(xùn)練時間為6298.29s,mAP達(dá)到90.6%,相比兩個傳統(tǒng)算法更高,更適合大豆異常籽粒的分類識別。為了提高訓(xùn)練精度及速度,通過對MobileNetV3網(wǎng)絡(luò)模型結(jié)構(gòu)調(diào)整改進(jìn),最終優(yōu)化改進(jìn)后的Opt-MobileNetV3網(wǎng)絡(luò)模型mAP達(dá)到95.7%,相較傳統(tǒng)MobileNetV3神經(jīng)網(wǎng)絡(luò)mAP提高5.1個百分點,模型內(nèi)存占用量為9317kB,減小22836kB,同時訓(xùn)練時間節(jié)省696.57s。優(yōu)化后的模型實現(xiàn)了模型減小、準(zhǔn)確率提高、訓(xùn)練速度加快,可完成大豆異常籽粒識別任務(wù)。

    Abstract:

    In response to the problems of excessive parameter quantity, high computational cost, and low accuracy in the recognition model of soybean abnormal seeds, an improved lightweight neural network MobileNetV3 model was proposed, which reduced the number of layers, accelerated the training and inference speed of the model, increased the nonlinear discrimination ability of the model by adding fully connected layers and softmax layers, and facilitated the output of multiple classification tasks, by using global average pooling instead of global maximum pooling to reduce information loss, and increasing the model's generalization ability by adding a Dropout layer and removing the SE Block attention mechanism in MobileNetV3. The experimental results showed that after comparing the soybean seed image data with the traditional convolutional neural networks AlexNet, VGG16, and lightweight neural network MobilenetV3, the AlexNet algorithm's final mean average precision (mAP) was 87.3%, and the VGG16 algorithm's mAP was 87.7%. The difference in mAP between the two was small, but there was a significant difference in model size and training time during the training process, the AlexNet model had a model size of 7070kB and a training time of 5420.59s, while the VGG16 model had a model size of 19674kB and a training time of 8282.68s. Overall, AlexNet was relatively better. The recognition and training of the lightweight neural network MobileNetV3 model resulted in a model size of 32153kB, a training time of 6298.29s, and an mAP of 90.6%, which was higher than that of the two traditional algorithms and more suitable for the classification and recognition of abnormal soybean seeds. In order to improve training accuracy and speed, the structure of the MobileNetV3 network model was adjusted and improved. The optimized Opt-MobileNetV3 network model mAP reached 95.7%, which was 5.1 percentage points higher than that of the traditional MobileNetV3 neural network mAP. The model size was 9317kB, reduced by 22836kB, and training time was saved by 696.57s. The optimized model achieved reducing model size, improving accuracy, and faster training speed, which can meet the task of identifying abnormal soybean seeds.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳思羽,朱紅媛,王俊發(fā),于添,王貞旭,劉春山.基于Opt-MobileNetV3的大豆種子異常籽粒識別研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(s2):359-365. CHEN Siyu, ZHU Hongyuan, WANG Junfa, YU Tian, WANG Zhenxu, LIU Chunshan. Abnormal Soybean Grains Recognition Based on Opt-MobileNetV3[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):359-365.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-30
  • 出版日期:
文章二維碼