亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于地面高光譜遙感的大豆產(chǎn)量估算模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52179045)


Soybean Seed Yield Estimation Model Based on Ground Hyperspectral Remote Sensing Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為在田間管理中對(duì)作物產(chǎn)量進(jìn)行估測(cè),通過(guò)兩年大田試驗(yàn)收集了大豆生殖生長(zhǎng)期的高光譜數(shù)據(jù)及產(chǎn)量數(shù)據(jù),基于各生育期一階微分光譜反射率計(jì)算了7個(gè)光譜指數(shù):比值指數(shù)(Ratio index,RI)、差值指數(shù)(Difference index,DI)、歸一化光譜指數(shù)(Normalized difference vegetation index,NDVI)、土壤調(diào)整光譜指數(shù)(Soil-adjusted iegetation index,SAVI)、三角光譜指數(shù)(Triangular vegetation index,TVI)、改進(jìn)紅邊歸一光譜指數(shù)(Modified normalized difference index,mNDI)和改進(jìn)紅邊比值光譜指數(shù)(Modified simple ratio,mSR),使用相關(guān)矩陣法將光譜指數(shù)與大豆產(chǎn)量數(shù)據(jù)進(jìn)行相關(guān)性分析并提取最佳波長(zhǎng)組合,隨后將計(jì)算結(jié)果作為與大豆產(chǎn)量相關(guān)的最佳光譜指數(shù),最后將各生育期篩選出的與大豆產(chǎn)量相關(guān)系數(shù)最高的5個(gè)光譜指數(shù)作為模型輸入變量,利用支持向量機(jī)(Support vector machine,SVM)、隨機(jī)森林(Random forest,RF)和反向神經(jīng)網(wǎng)絡(luò)(Back propagation neural network,BPNN)構(gòu)建大豆產(chǎn)量估算模型并進(jìn)行驗(yàn)證。結(jié)果表明,各生育期(全花期(R2)、全莢期(R4)和鼓粒期(R6))計(jì)算的光譜指數(shù)與產(chǎn)量的相關(guān)系數(shù)均高于0.6,相關(guān)性較好,其中全莢期的光譜指數(shù)FDmSR與大豆產(chǎn)量的相關(guān)系數(shù)最高,達(dá)到0.717;大豆產(chǎn)量最優(yōu)估算模型的方法是輸入變量為全莢期構(gòu)建的一階微分光譜指數(shù)和RF組合的建模方法,模型驗(yàn)證集R2為0.85,RMSE和MRE分別為272.80kg/hm2和5.12%。本研究成果可為基于高光譜遙感技術(shù)的作物產(chǎn)量估測(cè)提供理論依據(jù)和應(yīng)用參考。

    Abstract:

    To estimate crop yield in field management, hyperspectral data and yield data during the reproductive growth period of soybeans through two years of field experiments were collected. Seven spectral indices were calculated based on first-order spectral reflectance at various growth stages. These indices included the ratio index (RI), difference index (DI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), triangular vegetation index (TVI), modified normalized difference index (mNDI), and modified simple ratio (mSR). A correlation analysis between the spectral indices and soybean yield data were conducted by using the correlation matrix method. The best wavelength combinations to be used as the optimal spectral indices related to soybean yield were extracted. Finally, the five spectral indices with the highest correlation coefficients with soybean yield at different growth stages were selected as input variables for the model. Support vector machine (SVM), random forest (RF), and back propagation neural network (BPNN) were utilized to construct soybean yield estimation models and conducted validation. The results indicated that the spectral indices calculated at different growth stages (full flowering stage (R2), full pod stage (R4), and seed filling stage (R6)) all exhibited a correlation coefficient greater than 0.6 with yield, showing a strong correlation. Among these, the spectral index FDmSR at the full pod stage had the highest correlation with soybean yield, reaching 0.717. The optimal model for soybean yield estimation was built using first-order spectral indices from the full pod stage in combination with RF as input variables, achieving a validation set R2 of 0.85, and RMSE and MRE values of 272.80kg/hm2 and 5.12%, respectively. The research outcome can provide a theoretical basis and practical reference for crop yield estimation based on hyperspectral remote sensing technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

唐子竣,張威,黃向陽(yáng),向友珍,張富倉(cāng),陳俊英.基于地面高光譜遙感的大豆產(chǎn)量估算模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):145-153,240. TANG Zijun, ZHANG Wei, HUANG Xiangyang, XIANG Youzhen, ZHANG Fucang, CHEN Junying. Soybean Seed Yield Estimation Model Based on Ground Hyperspectral Remote Sensing Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):145-153,240.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-29
  • 出版日期: