亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于遙感多參數(shù)和VMD-GRU的冬小麥單產(chǎn)估測(cè)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(42171332)


Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and VMD-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為充分挖掘時(shí)間序列遙感參數(shù)的時(shí)序信息和趨勢(shì)信息,并進(jìn)一步提升冬小麥估產(chǎn)精度,以陜西省關(guān)中平原為研究區(qū)域,選取與冬小麥長勢(shì)密切相關(guān)的生育時(shí)期尺度的條件植被溫度指數(shù)(VTCI)、葉面積指數(shù)(LAI)和光合有效輻射吸收比率(FPAR)作為遙感參數(shù),構(gòu)建耦合變分模態(tài)分解(VMD)與門控循環(huán)單元(GRU)神經(jīng)網(wǎng)絡(luò)的估產(chǎn)模型。應(yīng)用VMD算法將各個(gè)時(shí)間序列遙感參數(shù)分解為多組平穩(wěn)的本征模態(tài)函數(shù)(IMF)分量,選取與原始時(shí)間序列遙感參數(shù)高度相關(guān)的IMF分量進(jìn)行特征重構(gòu),并將重構(gòu)特征作為GRU網(wǎng)絡(luò)的輸入,以構(gòu)建冬小麥組合估產(chǎn)模型。結(jié)果表明,VMD-GRU組合估產(chǎn)模型決定系數(shù)為0.63,均方根誤差為448.80kg/hm2,平均相對(duì)誤差為8.14%,相關(guān)性達(dá)到極顯著水平(P<0.01),其精度優(yōu)于單一估產(chǎn)模型精度,表明該組合估產(chǎn)模型能夠提取非平穩(wěn)時(shí)間序列數(shù)據(jù)的多尺度、多層次特征,并充分挖掘冬小麥各生育時(shí)期遙感參數(shù)間的內(nèi)在聯(lián)系,獲得準(zhǔn)確單產(chǎn)估測(cè)結(jié)果的同時(shí)提升了估產(chǎn)模型的可解釋性。

    Abstract:

    In order to fully exploit the time-series information and trend information of time-series remotely sensed parameters and further improve the yield estimation accuracy of winter wheat, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR), which were closely related to the growth and development of winter wheat, were selected as remotely sensed parameters, and a neural network was constructed based on variational mode decomposition (VMD) and gated recurrent unit (GRU). The VMD algorithm was applied to decompose each remotely sensed parameter series into multiple sets of intrinsic mode function (IMF) components, and the IMF components that were highly correlated with the original remotely sensed parameter series were selected for feature reconstruction, and the reconstructed features were used as the input of the GRU network to develop a combined model for yield estimation of winter wheat. The results showed that the VMD-GRU model for yield estimation had a coefficient of determination of 0.63, root mean squared error of 448.80kg/hm2, and mean relative error of 8.14%, with a highly significant correlation level (P<0.01), and its accuracy was better than that of the single model for yield estimation, indicating that the combined model for yield estimation can extract multi-scale and multilevel features of non-stationary time series and fully explore the internal linkage between remotely sensed parameters in each growth stage of winter wheat to obtain accurate yield estimation results and improve interpretability of model for yield estimation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭豐瑋,王鵬新,劉峻明,李紅梅.基于遙感多參數(shù)和VMD-GRU的冬小麥單產(chǎn)估測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):164-174,185. GUO Fengwei, WANG Pengxin, LIU Junming, LI Hongmei. Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and VMD-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):164-174,185.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-16
  • 出版日期: