亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Sentinel-1/2改進(jìn)極化指數(shù)和紋理特征的土壤含鹽量反演模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51979232、52279047、52179044)和國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1900404)


Synergistic Estimation of Soil Salinity Based on Sentinel-1/2 Improved Polarization Combination Index and Texture Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    目前Sentinel-1/2協(xié)同反演植被土壤含鹽量的研究大多是基于Sentinel-2光譜信息和Sentinel-1后向散射系數(shù),沒(méi)有考慮Sentinel-2光譜信息容易受土壤亮度等信息影響,Sentinel-1后向散射系數(shù)容易受土壤粗糙度和水分影響。為進(jìn)一步提高Sentinel-1/2協(xié)同反演植被土壤含鹽量的精度,用水云模型對(duì)雷達(dá)衛(wèi)星后向散射系數(shù)進(jìn)行校正,消除植被影響;然后協(xié)同Sentinel-2紋理特征,基于VIP、OOB、PCA 3種變量篩選和RF、ELM、Cubist 3種機(jī)器學(xué)習(xí)回歸模型構(gòu)建植被土壤含鹽量反演模型。研究結(jié)果表明:經(jīng)過(guò)水云模型去除植被影響后的雷達(dá)后向散射系數(shù)及其極化組合指數(shù)與土壤含鹽量的相關(guān)性有一定程度的提高。不同變量選擇方法與不同機(jī)器學(xué)習(xí)方法耦合模型在反演土壤含鹽量中,OOB變量篩選方法與RF、ELM和Cubist 3種機(jī)器學(xué)習(xí)方法的耦合模型精度最佳,建模集和驗(yàn)證集的R2都在0.750以上,且驗(yàn)證集的RMSE和MAE均最??;其中OOB-Cubist耦合模型精度最高,且R2v/R2c為0.955,具有良好的魯棒性。研究可為機(jī)器學(xué)習(xí)協(xié)同物理模型、光學(xué)衛(wèi)星協(xié)同雷達(dá)衛(wèi)星在土壤含鹽量反演中的進(jìn)一步應(yīng)用提供思路。

    Abstract:

    Most of the current studies on Sentinel-1/2 synoptic inversion of vegetation soil salinity were based on Sentinel-2 spectral information and Sentinel-1 backscattering coefficients, without considering the two aspects that Sentinel-2 spectral information was susceptible to soil brightness and Sentinel-1 backscattering coefficients were susceptible to soil roughness and moisture. Therefore, in order to further improve the accuracy of Sentinel-1/2 synoptic inversion of vegetation soil salinity, the Sentinel-1 backscatter coefficients were corrected with a water cloud model to eliminate the influence of vegetation. Then, the corrected backscatter coefficients and Sentinel-2 texture features screened by VIP, OOB and PCA were used to construct soil salinity inversion models based on RF, ELM and Cubist. The results showed that the correlation between the radar backscatter coefficient and the soil salinity was improved to some extent after the removal of vegetation effects by the water cloud model. For the coupled models of different variable selection methods and different machine learning methods, OOB had the best performance in soil salinity inversion when being coupled with RF, ELM and Cubist, with R2 above 0.750 for both modeling and validation sets. And OOB-Cubist model had the highest accuracy and R2v/R2c was 0.955, which had good robustness. It provided some ideas for further applications of machine learning in collaboration with physical models and optical satellites in collaboration with radar satellites in soil salinity inversion.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張智韜,賀玉潔,殷皓原,項(xiàng)茹,陳俊英,杜瑞麒.基于Sentinel-1/2改進(jìn)極化指數(shù)和紋理特征的土壤含鹽量反演模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):175-185. ZHANG Zhitao, HE Yujie, YIN Haoyuan, XIANG Ru, CHEN Junying, DU Ruiqi. Synergistic Estimation of Soil Salinity Based on Sentinel-1/2 Improved Polarization Combination Index and Texture Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):175-185.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-19
  • 出版日期: