亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于雙分支卷積網(wǎng)絡(luò)的玉米葉片葉綠素含量高光譜和多光譜協(xié)同反演
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(2021GG0345)和內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2021MS06020)


Hyperspectral and Multispectral Co-inversion of Chlorophyll Content in Maize Leaves Based on Two-branch Convolutional Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對智慧農(nóng)業(yè)中葉綠素的精準(zhǔn)預(yù)測問題,本文提出了基于雙分支網(wǎng)絡(luò)的玉米葉片葉綠素含量高光譜與多光譜協(xié)同反演的方法。使用欠完備自編碼器進(jìn)行數(shù)據(jù)降維,捕捉數(shù)據(jù)中最為顯著的特征,使降維后的數(shù)據(jù)可以代替原始數(shù)據(jù)進(jìn)行訓(xùn)練,從而加快訓(xùn)練效率,使用雙分支卷積網(wǎng)絡(luò)將多光譜數(shù)據(jù)用于填充高光譜數(shù)據(jù)信息,充分利用高光譜數(shù)據(jù)的空間細(xì)節(jié)信息,再結(jié)合1DCNN建立玉米葉片葉綠素含量預(yù)測模型。結(jié)果表明,與傳統(tǒng)降維算法相比較,欠完備自編碼器處理后預(yù)測結(jié)果最佳,決定系數(shù)R2為0.988,均方根誤差(RMSE)為0.273,表明使用欠完備自編碼器進(jìn)行降維可以有效提高數(shù)據(jù)反演精度;與單一的高光譜數(shù)據(jù)反演模型和多光譜數(shù)據(jù)反演模型相比,雙分支卷積網(wǎng)絡(luò)預(yù)測模型均取得較優(yōu)的預(yù)測結(jié)果,R2在0.932以上,RMSE均在1.765以下,表明基于雙分支卷積網(wǎng)絡(luò)的高光譜與多光譜圖像協(xié)同反演模型可以有效地利用數(shù)據(jù)的特征;對于其他數(shù)據(jù)結(jié)合本文提及的雙分支卷積網(wǎng)絡(luò)模型進(jìn)行反演,其R2均在0.905以上,RMSE均在2.149以下,表明該預(yù)測模型具有一定的普適性。

    Abstract:

    Aiming at the problem of accurate chlorophyll prediction in smart agriculture, a method of hyperspectral and multispectral synergistic inversion of chlorophyll content in maize leaves was proposed based on two-branch network. The undercomplete self-encoder was used for data dimensionality reduction to capture the most significant features in the data, so that the dimensionality reduced data can be trained instead of the original data to accelerate the training efficiency, and the two-branch convolutional network was used to fill the hyperspectral data with multispectral data to make full use of the spatial detail information of the hyperspectral data, and then combined with the 1DCNN to establish a prediction model of chlorophyll content in maize leaves. The results showed that compared with the traditional dimensionality reduction algorithm, the undercomplete self-encoder processed the best prediction results, with a coefficient of determination R2 of 0.988 and a root mean square error (RMSE) of 0.273, indicating that dimensionality reduction using the undercomplete self-encoder was effective in improving the accuracy of data inversion. Compared with the single hyperspectral data inversion model and the multispectral data inversion model, the two-branch convolutional network prediction models both achieved better prediction results, with R2 above 0.932 and RMSE below 1.765, indicating that the collaborative hyperspectral and multispectral image inversion model based on the two-branch convolutional network can make effective use of the features of the data. For the other data combined with the mentioned two-branch convolutional network model for the inverse model, the R2 was above 0.905 and the RMSE was below 2.149, which indicated that the prediction model had a certain degree of universality.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王亞洲,肖志云.基于雙分支卷積網(wǎng)絡(luò)的玉米葉片葉綠素含量高光譜和多光譜協(xié)同反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):196-202,378. WANG Yazhou, XIAO Zhiyun. Hyperspectral and Multispectral Co-inversion of Chlorophyll Content in Maize Leaves Based on Two-branch Convolutional Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):196-202,378.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-14
  • 出版日期: