亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LiDAR數(shù)據(jù)與光譜影像融合的單木提取方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家電網(wǎng)有限公司科技項(xiàng)目(5500-202220144A-1-1-ZN)


Single Wood Extraction Method Combining LiDAR Data and Spectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)有的機(jī)載數(shù)據(jù)單木分割方法對(duì)林型的普適度不高,尤其在高郁閉度闊葉林地帶提取精度偏低的問題,選用海南省??谑袩釒ч熑~林地帶的光譜影像和LiDAR數(shù)據(jù),先采用基于距離閾值的單木分割方法,利用高分光譜影像分割得到的樹冠邊緣,對(duì)初始探測(cè)樹頂點(diǎn)進(jìn)行位置約束。獲得單木頂點(diǎn)的精確定位后,采用基于種子點(diǎn)的單木分割方法分割,完成了闊葉林的單木提取。結(jié)果顯示,與已有的基于單木間相對(duì)間距單木分割方法相比,本研究通過選取最佳分割尺度結(jié)合光譜影像進(jìn)行精確定位,改善了原有單一尺度分割方法導(dǎo)致的過分割現(xiàn)象,將單木識(shí)別精確率由0.67提升至0.92。該方法在使用遙感對(duì)森林單木進(jìn)行分割工作中,可以更好地識(shí)別單木,對(duì)不同林型適用度較高,可以為后續(xù)的單木信息提取工作提供數(shù)據(jù)基礎(chǔ)。

    Abstract:

    Existing airborne data single-tree segmentation methods exhibit low universality for different forest types, particularly in areas with high canopy closure where the extraction accuracy is notably compromised. Spectral images and LiDAR data from the tropical broad-leaved forest region within the jurisdiction of Haikou City, Hainan Province, China, were employed. Initially, a distance threshold-based single-tree segmentation method was employed to extract tree crown edges from the high-resolution spectral image. Subsequently, the obtained positions of initial detected tree vertices were constrained using the segmented tree crown edges, and precise positioning of single-tree vertices was achieved. Following this, a seed-point-based single-tree segmentation method was applied for final tree extraction in the broad-leaved forest. The results indicated that compared with existing single-tree segmentation methods based on the relative distances between trees, by selecting the optimal segmentation scale in combination with spectral imagery for precise positioning, the issue of over-segmentation caused by traditional single-scale segmentation methods was ameliorated. The accuracy of single-tree identification was improved from 0.67 to 0.92. This method proved to be more effective in the segmentation of forest trees using remote sensing, demonstrating high applicability across various forest types. It established a solid data foundation for subsequent single-tree information extraction and held promising prospects for practical applications.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孟小前,李俊磊,胡偉,田茂杰,馬春田,王瑞瑞.基于LiDAR數(shù)據(jù)與光譜影像融合的單木提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):203-211,262. MENG Xiaoqian, LI Junlei, HU Wei, TIAN Maojie, MA Chuntian, WANG Ruirui. Single Wood Extraction Method Combining LiDAR Data and Spectral Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):203-211,262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-10
  • 出版日期: