亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于MobileNetV3Small-ECA的水稻病害輕量級識別研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61502236)和江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項目(CX(21)3059)


Lightweight Identification of Rice Diseases Based on Improved ECA and MobileNetV3Small
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)水稻病害的輕量化識別與檢測,使用ECA注意力機制改進MobileNetV3Small模型,并使用共享參數(shù)遷移學習對水稻病害進行智能化輕量級識別和檢測。在PlantVillage數(shù)據(jù)集上進行預訓練,將預訓練得到的共享參數(shù)遷移到對水稻病害識別模型上微調(diào)優(yōu)化。在開源水稻病害數(shù)據(jù)集上進行試驗測試,試驗結(jié)果表明,在非遷移學習下,識別準確率達到97.47%,在遷移學習下識別準確率達到99.92%,同時參數(shù)量減少26.69%。其次,通過Grad-CAM進行可視化,本文方法與其他注意力機制CBAM和SENET相比,ECA模塊生成的結(jié)果與圖像中病斑的位置和顏色更加一致,表明網(wǎng)絡(luò)可以更好地聚焦水稻病害的特征,并且通過可視化和各水稻病害分析了誤分類原因。本文方法實現(xiàn)了水稻病害識別模型的輕量化,使其能夠在移動設(shè)備等資源受限的場景中部署,達到快速、高效、便攜的目的。同時開發(fā)了基于Android的水稻病害識別系統(tǒng),方便于在邊緣端進行水稻病害識別分析。

    Abstract:

    In order to realize the lightweight identification and detection of rice diseases, the ECA attention mechanism was used to improve the MobileNetV3Small model, and shared parameter transfer learning was used to carry out intelligent lightweight identification and detection of rice diseases. Pre-training was performed on the PlantVillage dataset, and the shared parameters obtained from the pre-training were transferred to the rice disease recognition model for fine-tuning and optimization. Experiments were on the open-source rice disease dataset. The experimental results showed that the recognition accuracy rate reached 97.47% under non-transfer learning, and 99.92% under transfer learning, while reducing the number of parameters by 26.69%. Secondly, the Grad-CAM was used for visualization. Compared with other attention mechanisms CBAM and SENET, the results generated by the ECA module were more consistent with the position and color of the disease spots in the image, indicating that the network can better focus on rice diseases. Characteristics, and the causes of misclassification were analyzed through visualization and each rice disease. The proposed method realized the lightweight of the rice disease recognition model, so that it can be deployed in resource-constrained scenarios such as mobile devices, and achieved the purpose of fast, efficient and portable. At the same time, an Android-based rice disease identification system was developed, which can facilitate the identification and analysis of rice diseases at the edge.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁培森,歐陽柳江,翟肇裕,田永超.基于MobileNetV3Small-ECA的水稻病害輕量級識別研究[J].農(nóng)業(yè)機械學報,2024,55(1):253-262. YUAN Peisen, OUYANG Liujiang, ZHAI Zhaoyu, TIAN Yongchao. Lightweight Identification of Rice Diseases Based on Improved ECA and MobileNetV3Small[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):253-262.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-27
  • 出版日期: