亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于層級多標簽的農(nóng)業(yè)病蟲害問句分類方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣州市基礎與應用基礎研究項目(202201010184)、國家自然科學基金項目(72101091)和教育部人文社會科學研究一般項目(20YJC740067)


Hierarchical Multi-label Classification of Agricultural Pest and Disease Interrogative Questions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著信息化技術(shù)的快速發(fā)展,農(nóng)戶通過線上智能農(nóng)業(yè)問答系統(tǒng)解決線下農(nóng)業(yè)病蟲害問題已成為趨勢。問句分類在問答系統(tǒng)中發(fā)揮著至關重要的作用,其準確性直接決定了最終返回答案的正確性。傳統(tǒng)的單標簽文本分類模型難以直接準確捕捉到農(nóng)業(yè)病蟲害問句的確切意圖,而且由于缺乏大規(guī)模公開的農(nóng)業(yè)病蟲害問句語料,使得現(xiàn)有研究具有一定的難度。為此,本文基于樹狀結(jié)構(gòu)構(gòu)建了一個農(nóng)業(yè)病蟲害問句層級分類體系,由問句模糊性向精確性逐層細化分類,旨在克服農(nóng)業(yè)問句的語義復雜性;此外,引入對抗訓練方法,通過構(gòu)建對抗樣本并將其與原始樣本一同用于大規(guī)模語言模型的訓練,以提高模型泛化能力,同時緩解了因語料不足而產(chǎn)生的問題。通過對真實問答語料庫的實驗驗證,本文提出的方法能夠提升農(nóng)業(yè)病蟲害問句的分類性能,可為農(nóng)業(yè)病蟲害自動問答系統(tǒng)提供有效的問句意圖識別。

    Abstract:

    With the rapid advancement of information technology, it has become a trend for farmers to address offline agricultural issues through online intelligent question-and-answer systems. Question classification plays a crucial role in question-and-answer systems, as its accuracy directly determines the correctness of the final answers. Traditional single-label text classification models often struggle to accurately capture the precise intent of agricultural queries. Moreover, the lack of large-scale publicly available query datasets about agricultural pest and disease poses a significant challenge to existing research methods. To address these challenges, a hierarchical classification framework for queries about agricultural pest and disease was established based on a tree-like structure. This framework progressively refined the classification from the ambiguity of queries towards precision, aiming to overcome the semantic complexity of agricultural queries. Additionally, adversarial training method was introduced. By constructing adversarial samples and incorporating them into the training of large-scale language models, the model's generalization capabilities were enhanced, while mitigating issues arising from limited training data. Experimental validation conducted on real question-and-answer corpora demonstrated that the proposed method significantly enhanced the classification performance of queries about agricultural pest and disease. The research result can provide an effective means of identifying the intent behind agricultural queries, thereby offering support for advancing agricultural informatization.

    參考文獻
    相似文獻
    引證文獻
引用本文

韋婷婷,葛曉月,熊俊濤.基于層級多標簽的農(nóng)業(yè)病蟲害問句分類方法[J].農(nóng)業(yè)機械學報,2024,55(1):263-269,435. WEI Tingting, GE Xiaoyue, XIONG Juntao. Hierarchical Multi-label Classification of Agricultural Pest and Disease Interrogative Questions[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):263-269,435.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-02
  • 出版日期: