亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于采樣點(diǎn)光譜信息窗口尺度優(yōu)化的土壤含水率無人機(jī)多光譜遙感反演
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(22327002D、21327001D)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300503-15)


UAV Multispectral Remote Sensing Inversion of Soil Moisture Content Based on Window Size Optimization of Spectral Information at Sampling Points
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)空間異質(zhì)性導(dǎo)致的土壤含水率反演誤差較大的問題,分別以玉米灌漿期和小麥苗期的土壤含水率反演為例,利用無人機(jī)多光譜遙感技術(shù)獲取噴灌和畦灌灌溉方式下的正射影像。將34組光譜特征變量按照滑動(dòng)窗口法提取不同空間尺度的光譜信息平均值,通過極端梯度提升(Extreme gradient boosting,XGBoost)、支持向量機(jī)回歸(Support vector machine regression,SVR)以及偏最小二乘回歸(Partial least squares regression,PLSR)3種機(jī)器學(xué)習(xí)模型確定采樣點(diǎn)光譜信息最優(yōu)窗口尺度;然后,采用皮爾遜相關(guān)系數(shù)特征變量篩選法(Pearson correlation coefficient feature variable screening method,R)結(jié)合XGBoost和SVR模型對(duì)提取的34組光譜特征變量進(jìn)行篩選,選取與土壤含水率敏感的特征變量;最后,估算土壤含水率。結(jié)果表明:噴灌方式下所選擇的采樣點(diǎn)最優(yōu)光譜信息窗口尺度比畦灌小,其最優(yōu)窗口尺度范圍分別為11×11~21×21和15×15~29×29;采用皮爾遜相關(guān)系數(shù)特征變量篩選方法結(jié)合機(jī)器學(xué)習(xí)模型可有效提高土壤含水率反演精度;5種機(jī)器學(xué)習(xí)模型(R_XGBoost、R_SVR、XGBoost、SVR、PLSR)中R_XGBoost模型估算土壤含水率精度最優(yōu),在噴灌和畦灌方式下玉米灌漿期R_XGBoost模型的測(cè)試集決定系數(shù)R2分別為0.80、0.83,均方根誤差(Root mean square error,RMSE)分別為1.27%和0.98%,小麥苗期R2分別為0.76、0.79,RMSE分別為1.68%和0.85%;土壤含水率反演模型在畦灌條件下的精度優(yōu)于噴灌條件下。該研究可為基于無人機(jī)多光譜影像分析的信息挖掘和土壤水分監(jiān)測(cè)提供參考。

    Abstract:

    The primary factor in crop growth and one of the fundamental indicators used to monitor the wetness of fields is soil moisture. The relationship between the size of spectral information window of sampling points and soil moisture was mainly studied to solve the problem of soil moisture inversion error caused by spatial heterogeneity. UAV remote sensing technology was utilized to acquire multispectral orthophoto images during the corn filling and wheat seedling stages, under both sprinkler irrigation and border irrigation. Initially, the sliding window method was employed to extract 34 groups of spectral characteristic variables, capturing the average spectral information across various spatial scales. Subsequently, the optimal window size of spectral information at the sampling points was determined by using three machine learning models: extreme gradient Boost (XGBoost), support vector machine regression (SVR), and partial least squares regression (PLSR). Next, the feature variables extracted the 34 groups of spectral features were screened by using the Pearson correlation coefficient feature variable screening method (R) in conjunction with the XGBoost and SVR machine learning models. Subsequently, the feature variables that demonstrated sensitivity to soil water were selected. Lastly, the estimation of soil moisture was conducted. The results indicated that the optimal spectral information window for sampling points under sprinkler irrigation was smaller compared with that under border irrigation. Specifically, the optimal window size for sprinkler irrigation was ranged from 11×11 to 21×21, while for border irrigation, it was ranged from 15×15 to 29×29. The eigenvariable screening method, employing the Pearson correlation coefficient in combination with machine learning models, can significantly enhance the accuracy of soil moisture inversion. Among the five machine learning models (R_XGBoost, R_SVR, XGBoost, SVR, PLSR), the R_XGBoost model exhibited the highest accuracy in estimating soil moisture. The R_XGBoost model achieved R2 values of 0.80 and 0.83, and RMSE values of 1.27% and 0.98% under spray irrigation and border irrigation, respectively. Additionally, the R2 values were 0.76 and 0.79, and the RMSE values were 1.68% and 0.85%, respectively. The accuracy of the soil water inversion models was higher under border irrigation compared with that of sprinkler irrigation. The research result can serve as a valuable reference for information mining and soil moisture monitoring through the analysis of UAV multi-spectral images.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

靳亞紅,吳鑫淼,甄文超,崔曉彤,陳麗,郄志紅.基于采樣點(diǎn)光譜信息窗口尺度優(yōu)化的土壤含水率無人機(jī)多光譜遙感反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):316-327. JIN Yahong, WU Xinmiao, ZHEN Wenchao, CUI Xiaotong, CHEN Li, QIE Zhihong. UAV Multispectral Remote Sensing Inversion of Soil Moisture Content Based on Window Size Optimization of Spectral Information at Sampling Points[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):316-327.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-13
  • 出版日期:
Naganokeiki长野计器| 连续出料离心机| Chevalier精密磨床| 有源电力滤波柜| 超高压微波消解器| 液压无缝钢管| 高温拉力机| 表面污染检测仪| 液体硅橡胶| 氙灯加速老化试验箱| 化工厂防雷检测仪| 管道自动焊接| 济南楼承板| 快递测重扫描系统| 钓鱼艇| 粉末灌装旋盖机| 鸡鸭副产品解冻机| 电动硬密封法兰蝶阀| 超薄磁力搅拌器| 004静电测试仪| 山东皮带输送机| 矿用轨缝接触电阻测试仪| 金属应力检测设备| 水上乐园设备| 伸缩器| 中高压空压机| 林阳机械百科| 漂浮式喷泉曝气机| 砌墙砖抗压模具| 纸张抗张强度试验仪| 大功率多头数显恒温搅拌器| 光伏工程| 水性哑光树脂| 德国进口空气能热泵「商用地暖空调一体机取暖工程」| 成都无缝钢管厂家| 搪玻璃搅拌器| ELISA检测试剂盒| 吊秤供应价格| kubler计数器| 迷你离心机| 车充定位器|