亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

農田耕整載荷六維力傳感器結構優(yōu)化與解耦研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD2301302-5)、財政部和農業(yè)農村部:國家現(xiàn)代農業(yè)產業(yè)技術體系項目(CARS-05)和西藏自治區(qū)重大科技專項(XZ202101ZD0004-04)


Structural Optimization and Decoupling of Six Dimensional Force Sensor for Farmland Tillage Load
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農田耕整載荷大、測量精度低等問題,在經典十字梁結構基礎上,設計了一種輻梁式六維力傳感器,可同時測量力和力矩,通過仿真方法對傳感器結構進行了優(yōu)化,確定了應變梁長、寬、高分別為9、10、6mm;分析了傳感器結構在載荷下的應變能力,確定了應變片貼片位置。對傳感器開展了靜態(tài)標定試驗,基于標定數(shù)據采用改進型XGBoost(Extreme gradient boosting)機器學習網絡對力信號進行解耦,并與常規(guī)網絡進行比對。試驗結果表明,改進型XGBoost模型在X、Y、Z方向力和力矩6種加載方式的測試集決定系數(shù)R2P分別達到0.9804、0.9418、0.9434、0.9868、0.9969、0.9822,預測效果較好,避免了陷入局部最優(yōu)解。改進型XGBoost模型在六維加載力、力矩的R2P、測試集平均絕對誤差(MAEP)均明顯優(yōu)于隨機森林模型、傳統(tǒng)多元線性回歸,相較于傳統(tǒng)多元線性回歸方式,六維加載力、力矩的R2P分別提升22.57%、20.99%、23.32%、26.27%、26.05%、18.72%。基于機器學習的解耦算法可明顯減少耦合誤差的影響,提高傳感器的測量精度, 為農機優(yōu)化提供了技術支撐。

    Abstract:

    Aiming at the problems of large plowing load and low measurement accuracy, a six dimensional force sensor of radial beam type was designed on the basis of classical cross beam structure, which could measure force and moment at the same time. The sensor structure was optimized by simulation method, and the dimension length, width and height of strain beam were determined to be 9mm,10mm and 6mm, respectively. The strain capacity of the sensor structure under load was analyzed, and the position of the strain gauge patch was determined. Based on the calibration data, the improved XGBoost (extreme gradient boosting) machine learning network was used to decouple the force signal. The improved XGBoost model achieved R2P (determination coefficient of test set) of 0.9804, 0.9418, 0.9434, 0.9868, 0.9969, and 0.9822 in six loading modes of force and torque in X, Y and Z directions, respectively. The prediction performance was good, avoiding getting stuck in local optimal solutions. And then compared with the conventional network, the R2P and MAEP (average absolute error of test set) of the improved XGBoost model in the six dimensional force loading direction were significantly better than that of the random forest model and the traditional multiple linear regression. Compared with the traditional multiple linear regression method, the R2P of the six dimensional loading force/moment was increased by 22.57%, 20.99%, 23.32%, 26.27%, 26.05% and 18.72%, respectively. Machine learning based decoupling algorithms could significantly reduce the impact of coupling errors and improve the measurement accuracy of sensors and provide technical support for optimizing agricultural machinery.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳偉,張曉,袁棟,朱繼平,陳小兵,曹光喬.農田耕整載荷六維力傳感器結構優(yōu)化與解耦研究[J].農業(yè)機械學報,2024,55(2):28-35,89. CHEN Wei, ZHANG Xiao, YUAN Dong, ZHU Jiping, CHEN Xiaobing, CAO Guangqiao. Structural Optimization and Decoupling of Six Dimensional Force Sensor for Farmland Tillage Load[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):28-35,89.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼